
 
 

 

 

  

  

  

  

GroupID Management Shell  
Command Reference 

Version 10 



 
 

 

This publication applies to GroupID Version 10 and subsequent releases until otherwise indicated in new 
editions. 

© 2022 Imanami | Now Part of Netwrix.. Trademarks are the property of their respective owners. 



 

i © 2022 Imanami | Now Part of Netwrix 
 

Contents 
 

Chapter 1 - Introduction.......................................... 1 

Identity Store based Model .......................................... 1 

Connecting GroupID Management Shell  
Remotely ............................................................................. 2 

Access GroupID Management Shell  
Remotely ...................................................................... 3 

List of all commandlets ................................................. 4 

Chapter 2 - Establishing Connection with Identity 
Store .......................................................................... 8 

Connect-IdentityStore .................................................... 8 

Get-Token ............................................................................ 9 

Chapter 3 - General Commands ........................... 10 

Get-Computer ................................................................. 10 

Get-ConnectedStoreInformation ............................. 11 

Get-ConnectedUser ...................................................... 11 

Get-GroupIdInformation ............................................. 12 

Get-ImanamiCommand ............................................... 13 

Get-ReplicationStatus .................................................. 13 

Get-TombStoneObject ................................................. 14 

Invoke-Replication ........................................................ 15 

New-Container ............................................................... 16 

Remove-Container ........................................................ 17 

Restore-TombStoneObject ........................................ 17 

Send-Notification .......................................................... 18 

Chapter 4 - Identity Store Commands ................. 20 

Clear-MessagingServer ............................................... 21 

Clear-Notifications ........................................................ 21 

Clear-SmtpServer .......................................................... 22 

Get-AvailableMessagingServers .............................. 23 

Get-Client ......................................................................... 24 

Get-IdentityStore ........................................................... 25 

Get-IdentityStoreRoles ................................................ 27 

Get-LogSettings ............................................................. 28 

Get-RolePermissionNames ......................................... 29 

Get-SchemaAttributes .................................................. 29 

Get-SmsGateways .......................................................... 30 

Get-UserRole ................................................................... 30 

New-IdentityStore ......................................................... 32 

Remove-IdentityStore .................................................. 34 

Send-TestNotification .................................................. 35 

Set-IdentityStore ............................................................ 36 

Set-IdentityStoreRole ................................................... 44 

Set-MessagingServer .................................................... 45 

Set-Notifications ............................................................ 47 

Set-SmtpServer ............................................................... 48 

Chapter 5 - User Commands ................................ 50 

Get-User ............................................................................ 50 

Get-UserEnrollment ...................................................... 51 

New-User .......................................................................... 52 

Remove-User ................................................................... 53 

Set-User ............................................................................. 54 

Chapter 6 - User Lifecycle Commands ................ 56 

Extend-User ..................................................................... 56 

Get-Status ......................................................................... 57 

Reinstate-User ................................................................ 57 

Terminate-DirectReports ............................................ 58 

Transfer-DirectReports ................................................ 59 

Chapter 7 - Contact Commands ........................... 60 

Get-Contact ...................................................................... 60 

New-Contact .................................................................... 61 

Remove-Contact ............................................................. 62 



Contents 

ii © 2022 Imanami | Now Part of Netwrix 
 

Set-Contact ...................................................................... 63 

Chapter 8 - Group Commands .............................. 65 

Convert-Group ................................................................ 65 

Expire-Group ................................................................... 68 

Get-Group ......................................................................... 69 

Move-Group ..................................................................... 70 

New-Group ....................................................................... 71 

Remove-Group ............................................................... 73 

Renew-Group .................................................................. 74 

Set-Group ......................................................................... 74 

Chapter 9 - Smart Group Commands ................... 78 

ConvertTo-StaticGroup................................................ 78 

Get-Options ..................................................................... 79 

Get-SmartGroup ............................................................. 80 

New-SmartGroup ........................................................... 81 

Set-Options ...................................................................... 84 

Set-SmartGroup ............................................................. 87 

Update-Group ................................................................. 91 

Upgrade-Group ............................................................... 92 

Chapter 10 - Dynasty Commands ......................... 94 

New-Dynasty ................................................................... 94 

Set-Dynasty ..................................................................... 97 

Chapter 11 - Mailbox Commands ..................... 102 

Get-Mailbox ................................................................... 102 

New-Mailbox ................................................................. 103 

Remove-Mailbox ......................................................... 104 

Set-Mailbox ................................................................... 105 

Chapter 12 - Mail-Enabled/Disabled Groups 
Commands ........................................................... 107 

Disable-DistributionGroup ....................................... 107 

Enable-DistributionGroup ........................................ 108 

Chapter 13 - Memberships Commands ............ 109 

Add-GroupMember ..................................................... 109 

Get-GroupMember ...................................................... 111 

Get-Object ..................................................................... 111 

Remove-GroupMember............................................. 113 

Set-Object ...................................................................... 113 

Chapter 14 - Scheduling Commands ................. 115 

Get-Schedule ................................................................ 115 

Get-TargetSchedules ................................................. 117 

Invoke-Schedule ......................................................... 118 

New-Schedule .............................................................. 119 

Remove-Schedule ....................................................... 121 

Set-Schedule ................................................................ 122 

Stop-Schedule .............................................................. 124 

Chapter 15 - GroupID Commandlets  
Parameters ........................................................... 126 

List of Parameters ...................................................... 126 

Common Parameters ................................................. 171 

Appendix A ........................................................... 172 

Setting the $Credentials environment  
variable ........................................................................... 172 

 



 

1 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 1 - Introduction  
GroupID Management Shell is a command-line interface for managing objects like 
users, contacts, mailboxes, groups, smart groups, dynasties and for performing 
other administrative tasks in an Active Directory and Azure based identity stores.  

Built with Microsoft Windows PowerShell technology, GroupID Management Shell 
provides a platform to perform many of the tasks you can perform with GroupID 
Management Console as well as tasks that the console does not support.  

This guide is a reference for the GroupID PowerShell commands. It provides detail 
on their function, syntax, parameters, and gives ready-to-use examples that you can 
modify and test in your own environment.  

This guide is intended for advanced users familiar with the use of the Windows 
Command Prompt and Windows PowerShell. 

To use GroupID Management Shell remotely, remoting feature needs to be enabled. 
See Connecting GroupID Management Shell Remotely on page 2 for details. 

Identity Store based Model 

GroupID 10.0 has extensible identity store based model. It supports the following 
data stores for creating an identity store: 

• Active Directory 

• Generic LDAP  

• Microsoft Azure 

• Digium Switchvox 

• G Suite 

• Health Meter 

The commandlets cover in this guide are for Active Directory and Azure 
based identity stores. 



Chapter 1 - Introduction 

2 © 2022 Imanami | Now Part of Netwrix 
 

Connecting GroupID Management Shell Remotely 

To connect GroupID Management Shell remotely from another machine you need to 
configure the GroupID machine. 

The logged-in user machine must be a member of the Administrators group on the 
remote GroupID machine or the logged-in user must be able to provide the 
credentials of an Administrator. 

Make sure the following is available at the remote machine: 

• Windows Powershell 2.0 or later 

• Microsoft .Net Framework 4.7.2 

• Windows Remote Management 2.0 

To enable remoting on a GroupID machine with Windows Server 2008R2, Windows 
network location of that machine must be Domain or Private ("Home" or "Work"). If 
the network location is Public, GroupID Management Shell cannot create the 
required firewall exception for WS-Management Communication. 

The Windows Management Shell remoting features are supported by the WS-
Management protocol and the Windows Remote Management (WinRM) service that 
implements WS-Management in Windows. 

1. Click Start > Windows Powershell.  
Right-click Windows PowerShell and select Run as administrator. 

2. At the command prompt, type:  
enable-psremoting 

 
Figure 1: Windows PowerShell window 

By default, on Windows Server® 2012, Windows PowerShell 
remoting is enabled. Use this command to re-enable remoting on 
Windows Server 2012 if it becomes disabled. 

You have to run this command only one time on each computer that 
will receive commands. You do not have to run it on computers that 



Chapter 1 - Introduction 

3 © 2022 Imanami | Now Part of Netwrix 
 

only send commands. Because the configuration starts listeners, it is 
prudent to run it only where it is needed. 

To verify that remoting is configured correctly, run a test command: 

new-PSSession –ComputerName <computer name> 

This command creates a remote session on the local computer and return 
an object that represents the session. The output should look as shown in 
the following snapshot: 

 
Figure 2: Windows PowerShell window – with New-PSSession command 

Access GroupID Management Shell Remotely 

Logon to the machine through which you want to remotely access the GroupID 
Management Shell and perform the following steps: 

1. Right-click Start > Imanami > GroupID Management Shell using the Run as 
Administrator command to open it with Administrator privileges.  

2. At the prompt, type the following script. It will display the new session 
created for the remote machine. 

$username = "demo1\administrator" 

$pass  = ConvertTo-SecureString "support123R" -

AsPlainText -Force 

$Cred = New-Object 

System.Management.Automation.PSCredential ($username, 

$pass) 

$scriptBlock = [Scriptblock]::Create("add-pssnapin -

Name Imanami.groups.management.powershell.admin10") 

$s = New-PSSession -ComputerName "msvr02" -Credential 

$Cred 

Invoke-Command -Session $s -ScriptBlock $scriptBlock 

Import-PSSession -Session $s -Type cmdlet 

Connect-IdentityStore -mode "2" -IdentityStoreID "1" -

Credential $Cred 

 

Following line of the above script connects the current user 
(demo1\administrator) to the identity store (having ID 1)  

Connect-IdentityStore -mode "2" -IdentityStoreID "1" -

Credential $Cred 



Chapter 1 - Introduction 

4 © 2022 Imanami | Now Part of Netwrix 
 

Using the following instructions, you can get the identity store ID from 
GroupID SQL database in which the desired identity store exists: 

a. Login to SQL server (having GroupID database) with account having read 
permissions. 

b. View the table “Svc.Identitystore” top 100 rows. 

See the following snapshot for details: 

 
Figure 3: GroupID Database table in SQL Server for identity store ID 

List of all commandlets 

You can get the list of all GroupID Management Shell commandlets using the Get-
ImanamiCommand.  

1. Add-GroupMember 

2. Clear-MessagingServer 

3. Clear-Notifications 

4. Clear-SmtpServer 

5. Connect-IdentityStore 

6. Convert-Group  

7. ConvertTo-StaticGroup 

8. Disable-DistributionGroup  

9. Enable-DistributionGroup  

10. Expire-Group  



Chapter 1 - Introduction 

5 © 2022 Imanami | Now Part of Netwrix 
 

11. Extend-User  

12. Get-AvailableMessagingServers 

13. Get-Client 

14. Get-Computer 

15. Get-ConnectedStoreInformation 

16. Get-ConnectedUser 

17. Get-Contact  

18. Get-Group  

19. Get-GroupIdInformation 

20. Get-GroupMember 

21. Get-IdentityStore 

22. Get-IdentityStoreRoles 

23. Get-ImanamiCommand  

24. Get-LogSettings 

25. Get-MailBox  

26. Get-Object 

27. Get-Options 

28. Get-ReplicationStatus 

29. Get-RolePermissionNames 

30. Get-Schedule 

31. Get-SchemaAttributes 

32. Get-SmartGroup 

33. Get-SmsGateways 

34. Get-Status  

35. Get-TargetSchedule 

36. Get-Token  

37. Get-TombstoneObject 

38. Get-User 

39. Get-UserEnrollment 



Chapter 1 - Introduction 

6 © 2022 Imanami | Now Part of Netwrix 
 

40. Get-UserRole 

41. Invoke-Replication 

42. Invoke-Schedule 

43. Move-Group  

44. New-Contact  

45. New-Container  

46. New-Dynasty  

47. New-Group  

48. New-IdentityStore 

49. New-MailBox 

50. New-Schedule 

51. New-SmartGroup 

52. New-User  

53. Reinstate-User  

54. Remove-Contact  

55. Remove-Container 

56. Remove-Group  

57. Remove-GroupMember 

58. Remove-IdentityStore 

59. Remove-MailBox  

60. Remove-Schedule 

61. Remove-User 

62. Renew-Group 

63. Restore-TombstoneObject 

64. Send-Notification  

65. Send-TestNotification 

66. Set-Contact  

67. Set-Dynasty  

68. Set-Group  



Chapter 1 - Introduction 

7 © 2022 Imanami | Now Part of Netwrix 
 

69. Set-IdentityStore 

70. Set-IdentityStoreRole 

71. Set-MailBox  

72. Set-MessagingServer 

73. Set-Notifications 

74. Set-Object 

75. Set-Options 

76. Set-Schedule 

77. Set-SmartGroup 

78. Set-SmtpSrever 

79. Set-User  

80. Stop-Schedule 

81. Terminate-DirectReports  

82. Transfer-DirectReports  

83. Update-Group  

84. Upgrade-Group 

The following chapters provide information about syntax and supported parameters 
of these commandlets. Examples of each commandlet are also provided for further 
clarification. 

 



 

8 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 2 - Establishing Connection with 
Identity Store  

This chapter covers commandlets for establishing connection with an identity store:  

• Connect-IdentitySore: connects to an identity store using the authentication 
mode mentioned. 

• Get-Token: gets a token from GroupID Security Service.  

Review the description of the supported parameters of these 
commandlets along with their attributes and description in the List of 
Parameters table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Connect-IdentityStore 

If an identity store of the connected domain is available, then GroupID Management 
Shell gets connected to that identity store upon its launch. In case it does not exist 
the Connect-IdentityStore commandlet establishes a connection with the required 
identity store.  

After a connection is established with the identity store you can then perform 
functions in directory as per your role and permissions.  

Syntax 
Connect-IdentityStore  

  [-AuthenticationMode <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• None 



Chapter 2 - Establishing Connection with Identity Store 

9 © 2022 Imanami | Now Part of Netwrix 
 

Example 

The following command connects you to the identity store specified by the 
IdentityStoreId parameter using the specified authentication mode and credentials 
that you set in the $Credentials environment variable. For information about setting 
credentials, see Appendix A. 

Connect-IdentityStore -AuthenticationMode 2 -

IdentityStoreId 2 -Credential $Cred 

Get-Token 

When Management Shell is connected to an identity store a token is passed with 
the commandlet enabling user to perform the required functions in directory.  

If you want to perform a function in a different identity store Management Shell is 
connected with then first, you must have a valid token for the required identity 
store using the Get-Token commandlet. This commandlet gets a token from 
GroupID Security Service which was assigned to the user at the time of 
authentication. 

Get-Token command is also used to get a valid token in case of token expires in a 
session. 

Syntax 
Get-Token  

  [-AuthenticationMode <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• None 

Example 

The following command returns a token for the identity store specified by the 
IdentityStoreId parameter using the specified authentication mode and credentials 
that you set in the $Credentials environment variable. For information about setting 
credentials, see Appendix A. 

Get-Token -AuthenticationMode 2 -IdentityStoreId 2 -

Credential $Cred 

 



 

10 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 3 - General Commands 
This chapter covers commandlets for performing general tasks such as: 

• Get-Computer: provides information about computer object. 

• Get-ConnectedStoreInformation: provides information about the connected 
identity store. 

• Get-ConnectedUser: provides information about the connected user. 

• Get-GroupIdInformation: provides information about GroupID. 

• Get-ImanamiCommand: provides basic information about GroupID 
Management Shell commandlets. 

• Get-ReplicationStatus: provides replication status of objects. 

• Get-TombStoneObject: displays information about the tombstone objects. 

• Invoke-Replication: starts replication process for all the identity stores or for 
a specific identity store. 

• New-Container: creates a new organizational unit. 

• Remove-Container: removes an empty organizational unit. 

• Restore-TombSoneObject: restores tombstone objects from Directory. 

• Send-Notification: sends notifications to a group or a particular user. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of Parameters table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Get-Computer 

The Get-Computer cmdlet retrieves the information about a computer object from 
the connected identity store. The computer can be a domain controller or an 
exchange server or just a simple client connected to the domain. 



Chapter 3 - General Commands 

11 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-Computer  

  [-Identity <string>] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

This example retrieves a computer with a name arsalanahmadsvm. 

get-computer -Identity arslanahmadsvm 

Get-ConnectedStoreInformation 

The Get-ConnectedStoreInformation commandlet retrieves information about the 
identity store connected to the current instance of the management shell.  

Syntax 
Get-ConnectedStoreInformation 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The example displays name of the connected identity store, the last replication 
time to Elasticsearch, and messaging servers configured in the connected identity 
store. 

Get-ConnectedStoreInformation 

Get-ConnectedUser 

Retrieves the general information about the user connected to the current instance 
of Management Shell. 



Chapter 3 - General Commands 

12 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-ConnectedUser 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

 [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The example displays the logon name of the connected user, account locked 
information, identity store name, role name(s), and ObjectGuid. 

Get-ConnectedUser 

Get-GroupIdInformation 

The Get-GroupIdInformation commandlet retrieves general information about 
GroupID. 

Syntax 
Get-GroupIdInformation 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

This example displays the name of the database and name of the SQL server being 
used by GroupID, GroupID version and the installation path of GroupID.  

Get-GroupIdInformation 



Chapter 3 - General Commands 

13 © 2022 Imanami | Now Part of Netwrix 
 

Get-ImanamiCommand 

Use the Get-ImanamiCommand commandlet to retrieve basic information about 
GroupID Management Shell commandlets and other command elements.  

Syntax 
Get-ImanamiCommand  

  [-Name <string[]>]  

  [-Verb <string>]  

  [-Noun <string>]  

  [-AttributesToLoad <string[]>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The following command shows information about all commandlets. 

Get-ImanamiCommand 

Example 2 

The following command gets all commandlets and command elements with the 
word Set in their name. 

Get-ImanamiCommand -Name Set* 

Example 3 

The following command gets all commandlets and command elements with the 
letter Y anywhere in the verb of their name. 

Get-ImanamiCommand -Verb *Y* 

Get-ReplicationStatus 

The Get-ReplicationStatus commandlet retrieves the replication status of each 
domain of an identity store. The commandlet provides replication status of each 
object (such as users, groups, contact, computer, public folders and OUs) in the 
identity store domain(s). 



Chapter 3 - General Commands 

14 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-ReplicationStatus 

  [-IdentityStoreName] <string> 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

Example 1 

The following commandlet provides date and time information when the objects of 
an identity store are replicated to Elasticsearch and the time elapsed since last 
replication. 

Get-ReplicationStatus -IdentityStoreName AdStore8  

Get-TombStoneObject 

When you delete an object from Directory, the object is not physically removed 
from the database. Instead, Directory marks the object as deleted, strips most of the 
properties from the object and moves it to a special container. The object becomes 
invisible to normal directory operations and is referred to as a tombstone object. 
Use the Get-TomStoneObject commandlet to view information about these 
tombstone objects. 

Syntax 
Get-TombstoneObject  

  [[-Identity] <string[]>]  

  [-SearchContainer <string[]>]  

  [-SearchContainersScopeList <string>]  

  [-ShouldReturnCollection]  

  [-MaxItemsToDisplay <int>]  

  [-ObjectType <string[]>]  

  [-LdapFilter <string>]  

  [-SmartFilter <string>]  

  [-ServerFilter <string>]  

  [-AttributesToLoad <string[]>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• None 



Chapter 3 - General Commands 

15 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

The following command retrieves all tombstone objects from Directory, using the 
credentials of current user logged-on to the identity store. 

Get-TombStoneObject 

Example 2 

The following command retrieves the tombstone group Event Management, using 
the credentials set in the $Credentials environment variable. For information about 
setting credentials, see Appendix A. 

Get-TombStoneObject -identity "Event Management" -

Credential $Cred 

Example 3 

The following command retrieves all tombstone objects with display names starting 
with the letter S. 

Get-TombStoneObject -LdapFilter "(CN = S*)" 

Invoke-Replication  

This will start replication process for all the identity stores or specific identity store. 

Syntax 
Invoke-Replication  

  [-IdentityStoreId <int>]  

  [-DeletedObjects]  

  [-RestoreReplication]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The following command replicate identity store with ID 1. 

Invoke-Replication -IdentitystoreId 1  

Example 2 

The following command replicate deleted objects for identity store with ID 1. 



Chapter 3 - General Commands 

16 © 2022 Imanami | Now Part of Netwrix 
 

Invoke-Replication -IdentitystoreId 1 -DeletedObjects 

Example 3 

The following command will start restoration of replication for identity store with 
ID 1. 

Invoke-Replication -IdentitystoreId 1 -RestoreReplication 

New-Container 

The New-Container commandlet creates a new organizational unit in Directory. You 
can also use it to create nested organizational units by repeatedly executing the 
commandlet and changing the value of the ParentContainer parameter.  

Syntax 
New-Container  

  -ContainerName <string[]>  

  -OrganizationalUnit <string>  

  [-AccidentalDeletion]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameters 

• ContainerName  

• OrganizationalUnit 

Example 1 

The following command creates the organizational unit Recruiting at the root level 
in Directory, using the credentials of current user logged-on to the identity store. 

New-Container -OrganizationalUnit "DC=HR,DC=Imanami,DC=US" 

-ContainerName "Recruiting" 

Example 2 

The following command creates the organizational unit Local Recruiting inside the 
Recruiting container in Directory using the credentials set in the $Credentials 
environment variable. For information about setting credentials, see Appendix A 

New-Container - OrganizationalUnit 

"OU=Recruiting,DC=HR,DC=Imanami,DC=US" -ContainerName 

"Local Recruiting" -Credential $Cred 



Chapter 3 - General Commands 

17 © 2022 Imanami | Now Part of Netwrix 
 

Remove-Container 

Use the Remove-Container commandlet to delete organizational units from 
Directory. The commandlet only supports deletion of containers at leaf level, having 
no objects. If the container contains objects or sub-containers, the commandlet 
does not process the request and throws an exception.  

Syntax 
Remove-Container  

  -Identity <string>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

The following command removes the Miscellaneous container, using the 
credentials of current user logged-on to the identity store. 

Remove-Container -identity 

"OU=Miscellaneous,OU=Recruiting,DC=HR,DC=Imanami,DC=US" 

Example 2 

The following command first shows the changes that result from executing the 
command. The command uses the credentials set in the $Credentials environment 
variable to perform the deletion. For information about setting credentials, see 
Appendix A. 

Remove-Container -identity 

"OU=Miscellaneous,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

Credential $Cred 

Restore-TombStoneObject 

Use the Restore-TombStoneObject commandlet to restore tombstone objects from 
Directory. The tombstone object is restored as an unmanaged group with all 
supported attributes to its original container. If the parent container has been 
deleted, the commandlet also reinstates the container for the group. 



Chapter 3 - General Commands 

18 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Restore-TombstoneObject  

  [-Identity] <string>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• None 

Example 

The following command restores the tombstone group Event Management, using 
the credentials set in the $Creds environment variable. For information about 
setting credentials, see Appendix A. 

Restore-TombStoneObject -identity "Event Management" -

Credential $Cred 

Send-Notification 

Use the Send-Notification commandlet to send notifications to a group or a 
particular user. GroupID modules automatically generate e-mail notifications upon 
the occurrence of certain events; for example, expiry of groups, execution of a job, 
and generation of workflow requests. The modules use template files for generating 
the contents of the notification e-mails. These template files are located at: 

X:\Program Files\Imanami\GroupID 8.0\Automate\Templates\Notifications  

Where X is the drive where the GroupID installation directory resides. The Send-
Notification commandlet also requires a template file for generating e-mail 
contents. You can utilize one from the available templates or create your own.  

The commandlet also requires an SMTP server and a From e-mail address that you 
can configure using the Set-Options commandlet.  



Chapter 3 - General Commands 

19 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Send-Notification  

  -Identity <string>  

  -Subject <string>  

  -TemplateFile <string>  

  [-InlineImageFile <string>]  

  [-QueueEmail]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameters 

• Identity  

• Subject 

• TemplateFile 

Example 1 

The following commands first configure the SMTP Server, then set a From e-mail 
address, and finally send a group expiry notification to UserA using the credentials 
of current user logged-on to the identity store. 

Set-Options -SmtpServer "HR.Imanami.US" 

Set-Options -FromAddress "Administrator@HR.Imanami.US" 

 

Send-Notification -Identity 

"CN=UserA,CN=Users,DC=HR,DC=Imanami,DC=US" -Subject "Expiry 

Notification" -TemplateFile "C:\Program 

Files\Imanami\GroupID 

8.0\Automate\Templates\Notifications\ExpiringTemplate.html" 

-QueueEmail 

Example 2  

The following command sends a notification to the New Arrivals group. It follows a 
custom template with an in-line image and uses the credentials of the user set in 
the $Credentials environment variable. For information about setting credentials, 
see Appendix A. 

Send-Notification -Identity "CN=New 

Arrivals,CN=Users,DC=HR,DC=Imanami,DC=US" -Subject "Welcome 

to Imanami" -TemplateFile "C:\Welcome.html" -

InlineImageFile "C:\WelcomeNote.jpg" -QueueEmail 

 



 

20 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 4 - Identity Store Commands 
This chapter covers commandlets for performing identity store related tasks such 
as: 

• Clear-MessagingServer: removes a configured messaging server. 

• Clear-Notifications: removes notification settings of an identity store. 

• Clear-SmtpServer: removes a configured SMTP server of an identity store. 

• Get-AvailableMessagingServers: retrieves messaging servers for the 
configured messaging provider.  

• Get-Client: lists information about the GroupID clients. 

• Get-IdentityStore: retrieves information about an identity store. 

• Get-IdentityStoreRoles: retrieves information about the security roles of an 
identity store 

• Get-LogSettings: provides information about the global log settings of the 
connected identity store. 

• Get-RolePermissionNames: lists the names of the permissions assigned to 
the logged-in user. 

• Get-SchemaAttributes: lists schema attributes available for an identity store. 

• Get-SmsGateways: provides information of the configured SMS gateways. 

• Get-UserRole: displays role information of the specified user of an identity 
store. 

• New-IdentityStore: creates a new identity store. 

• Remove-IdentityStore: removes an identity store in GroupID. 

• Send-TestNotification: sends a test notification. 

• Set-IdentityStore: modifies an identity store configuration. 

• Set-IdentityStoreRole: modifies properties of a security role in an identity 
store. 

• Set-MessagingServer: configures a messaging server in identity store. 

• Set-Notifications: modifies notification settings of an identity store.  

• Set-SmtpServer: configures an SMTP server of an identity store. 



Chapter 4 - Identity Store Commands 

21 © 2022 Imanami | Now Part of Netwrix 
 

Clear-MessagingServer 

The commandlet Clear-MessagingServer removes the configured messaging server 
from the specified identity store. 

This cmdlet will also clear the SMTP settings, notification settings, 
password expiry settings, membership lifecycle notification settings, and 
managed by notification settings for the identity store. 

Syntax 
Clear-MessagingServer 

  -IdentityStoreName <string> 

  [<CommonParameters>] 

Required parameters 

• IdentityStoreName 

Example 1: 

This example clears configured messaging server for AdStore8 identity store. 

Clear-MessagingServer -IdentityStoreName AdStore8 

Clear-Notifications 

The commandlet Clear-Notifications removes notifications settings from an identity 
store. The notifications settings can be removed individually or in sets. 

Syntax 
Clear-Notifications 

  -IdentityStoreName <string> 

  [-PrimaryRecepients] 

  [-CarbonCopy] 

  [-NotifyLoggedInUsers] 

  [-NotifyOwners] 

  [-NotifyModifiedObject] 

  [-NotifyPublicGroupOwner] 

  [-NotifyAddedMembers] 

  [-PasswordPortalUrl] 

  [-NotifyUserGroupJoinML] 

  [-NotifyUserGroupLeaveML] 

  [-XDaysBeforeLeaveNotificationML] 

  [-NotifyUserGroupJoinMB] 

  [-NotifyUserGroupLeaveMB] 



Chapter 4 - Identity Store Commands 

22 © 2022 Imanami | Now Part of Netwrix 
 

  [-XDaysBeforeLeaveNotificationMB] 

  [<CommonParameters>] 

 

Clear-Notifications  

  -IdentityStoreName <string>  

  [-ClearSet {All | Recipients | PasswordExpiry | ML | MB}] 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

Example 1 

This example individually removes the Membership Lifecycle notification option – 
X days before user is going to leave the group for the AdStore9 identity store. 

Clear-Notifications -IdentityStoreName AdStore9 -

NotifyLoggedInUsers –XdaysBeforeLeaveNotificationML 10 

Example 2 

This example removes recipients in sets mentioned under the Recipients section on 
the Notification page of AdStore9 identity store properties.  

Clear-Notifications -IdentityStoreName AdStore9 -ClearSet 

Recipients 

Clear-SmtpServer 

The commandlet Clear-SmtpServer removes the SMTP server configurations from 
an identity store. 

This cmdlet will also clear the notification settings for the identity store 
recipients, password expiry group notifications, membership lifecycle 
notifications, and managed by notification options for the specified identity 
store. 

Syntax 
Clear-SmtpServer  

  -IdentityStoreName <string> 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 



Chapter 4 - Identity Store Commands 

23 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

This example clears the configured SMTP server in AdStore9 identity store.  

Clear-SmtpServer -IdentityStoreName AdStore9 

Get-AvailableMessagingServers 

The commandlet Get-AvailableMessagingServers retrieves the messaging server(s) 
available for the configured messaging provider. 

Syntax 
Get-AvailableMessagingServers 

  -IdentityStoreName <string> 

  -Provider {o365 | gsuite | exchange2010 | exchange2013 | 

exchange2016 | exchange2019} 

  -UserName <string> 

  [-Password <string>] 

  <CommonParameters>] 

 

Get-AvailableMessagingServers 

  -IdentityStoreName <string> 

  -Provider {o365 | gsuite | exchange2010 | exchange2013 | 

exchange2016 | exchange2019} 

  -Credential <pscredential> 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

• Provider 

• Credential 

Example 1 

This example retrieves the available messaging server(s) configured in AdStore1 
identity store for Exchange 2010 messaging provider. 

Get-AvailableMessagingServers -IdentityStoreName AdStore1 -

Provider exchange2010 -UserName administrator -Password 

webdir123R -Domain pucit.local 



Chapter 4 - Identity Store Commands 

24 © 2022 Imanami | Now Part of Netwrix 
 

Example 2 

This example retrieves the available messaging server(s) configured in Adstore1 
identity store for Office365 messaging provider. 

Get-AvailableMessagingServers -IdentityStoreName AdStore1 -

Provider o365 -UserName admin@mydomain.onmicrosoft.com -

Password webdir123R -Domain mydomain.onmicrosoft.com -AppId 

'eeeeeeee-aaaa-dddd-bbbb-cccccccccccc' 

Example 3 

This example retrieves the available messaging server(s) in AdStore1 identity store 
for GSuite (Google Apps) messaging provider. 

Get-AvailableMessagingServers -IdentityStoreName AdStore1 -

Provider gsuite -UserName svcaccount@myproject-

219211.iam.gserviceaccount.com -AdminUsername 

'arslan@mydomain.com' -P12CertificatePath 

'C:\Keys\gsuite\key.p12'  

Get-Client 

The commandlet Get-Client gets information about the GroupID clients such as 
Automate, Management Shell, GroupID Mobile Service, each Self-Service portal, 
each Password Center portal. The information includes client name, client type, and 
identity store(s) of the client. 

Syntax 
Get-Client 

  [[-ClientName] <String>] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

 [<CommonParameters>] 

Required parameter 

• None 

Example 1 

This example retrieves information about a client Automate ARSALANAHMADVM. 

Get-Client –ClientName ‘Automate ARSLANAHMADVM’ 



Chapter 4 - Identity Store Commands 

25 © 2022 Imanami | Now Part of Netwrix 
 

Example 2 

This example retrieves information about two clients – automate arslanahmadvm 
and managementshell arsalanahmadvm – through the pipeline operator. 

‘automate arslanahmadvm’, ‘managementshell arslanahmadvm’ | 

Get-Client 

Example 3 

This example lists all GroupID clients available on the GroupID machine. 

Get-Client 

Example 4 

This example lists all Password Center clients.  

Get-Client | Where-Object {$_.Type -eq "Password Center"} 

Example 5 

This example lists all GroupID clients that belong to identity store AdStore9. 

Get-Client | Where-Object 

{$_.IdentityStores.Contains('AdStore9')} 

Get-IdentityStore 

The commandlet Get-IdentityStore retrieves information about the specified 
identity store or retrieves information of identity store(s) as per the given switches 
such as All, Connected, Enabled or Disabled. 

The information includes identity store name, description, connection string, 
notification status, roles in identity store, and so on.  

Syntax 
Get-IdentityStore  

  -IdentityStoreName <String> 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>]   

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

 



Chapter 4 - Identity Store Commands 

26 © 2022 Imanami | Now Part of Netwrix 
 

Get-IdentityStore 

  -All  

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

 [<CommonParameters>]  

 

Get-IdentityStore 

  -Connected  

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

 

Get-IdentityStore 

  -Enabled  

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

 

Get-IdentityStore 

  -Disabled  

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 



Chapter 4 - Identity Store Commands 

27 © 2022 Imanami | Now Part of Netwrix 
 

Required parameter 

• IdentityStoreName or a switch { All | Connected | Enabled | Disabled} 

Example 1 

This example retrieves information of AdStore1 identity store.  

Get-IdentityStore -IdentityStoreName AdStore1 

Example 2 

This example retrieves information of two identity stores – AdStore1 and AdStore2 – 
through the pipeline operator. 

'AdStore1','AdStore2' | Get-IdentityStore 

Example 3 

This example retrieves information of all identity stores available on the GroupID 
machine. 

Get-IdentityStore -All 

Example 4 

This example retrieves information of identity store connected to the current 
instance of the GroupID Management Shell. 

Get-IdentityStore -Connected 

Example 5 

This example displays information of all enabled identity store(s). 

Get-IdentityStore -Enabled 

Example 6 

This example is for getting information of all disabled identity store(s). 

Get-IdentityStore -Disabled 

Get-IdentityStoreRoles 

The commandlet Get-IdentityStoreRoles retrieves information about the security 
roles associated with an identity store. The information includes role name, role 
priority, role criteria and role permissions.  



Chapter 4 - Identity Store Commands 

28 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-IdentityStoreRoles  

  [-IdentityStoreName] <String> [[-RoleName] <String>] 

  [[-Subset] <String>] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

Example 1: 

This example retrieves information of customrole1 role in AdStore1 identity store.  

Get-IdentityStoreRoles -IdentityStoreName AdStore1 -

RoleName customrole1 

Example 2: 

This example provides information about all roles in adstore1 identity store. 

Get-IdentityStoreRoles -IdentityStoreName adstore1 

Example 3: 

This example retrieves information about two security roles – customrole1 and 
customrole2 – in AdStore1 identity store through the pipeline operator. 

'customrole1', 'customrole2' | Get-IdentityStoreRoles -

IdentityStoreName AdStore1 

Get-LogSettings 

The commandlet Get-LogSettings provides information about the global log 
settings of the identity store connected with this instance of GroupID Management 
Shell.  

Syntax 
Get-LogSettings 

  [<CommonParameters>] 



Chapter 4 - Identity Store Commands 

29 © 2022 Imanami | Now Part of Netwrix 
 

Required parameter 

• None 

Example 1 

This example retrieves the log settings of the connected identity store. 

Get-LogSettings 

Get-RolePermissionNames 

The commandlet Get-RolePermissionNames helps user to see the names of the 
permissions that can be assigned to / revoked from a security role in an identity 
store.  

Syntax 
Get-RolePermissionNames 

  [-IncludeEntityTypes] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

This example provides list of permissions names for a security role. 

Get-RolePermissionNames 

Example 2 

This example provides list of permission names along with the category of a 
permission.  

Get-RolePermissionNames -IncludeEntityTypes 

Get-SchemaAttributes 

The commandlet Get-SchemaAttribute enables you to retrieve comprehensive list 
of schema attributes available for an identity store.  

This cmdlet can be used to enlist the names of schema attributes required for 
various cmdlets like cmdlets related to identity store roles etc. 



Chapter 4 - Identity Store Commands 

30 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-SchemaAttributes 

  [-IdentityStoreName] <string> 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

Example 1 

This example retrieves list of available schema attributes in alphabetical order for 
the AdStore9 identity store. 

Get-SchemaAttributes -IdentityStoreName AdStore9 

Get-SmsGateways 

The commandlet Get-SmsGateways provides information of the SMS gateways 
configured in GroupID. 

Syntax 
Get-SmsGateways 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

This example lists all the configured SMS gateways in GroupID. 

Get-SmsGateways 

Get-UserRole 

The commandlet Get-UserRole displays information about the role of the specified 
user in an identity store.  

If a user has different roles in different GroupID clients of an identity store; and 
ClientName parameter is not specified, this commandlet displays the highest 
priority role of the user. If the identity store name is not specified, the connected 
identity store is used by this cmdlet. 



Chapter 4 - Identity Store Commands 

31 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-UserRole 

  [-Identity] <string>  

  [-IdentityStoreName <string>] 

  [-ClientName <string>] 

  [-All] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

This example provides role information of the user testingaccount in the Automate 
ArslanAhmadVM client of the AdStore1 identity store. 

Get-UserRole -Identity testingaccount -IdentityStoreName 

AdStore1 -ClientName 'Automate ArslanAhmadVM' 

Example 2 

This example displays the highest priority role information of the 
testingaccount@pucit.local user for all clients of AdStore1 identity store. 

Get-UserRole -Identity testingaccount@pucit.local -

IdentityStoreName AdStore1 

Example 3 

This example displays role information of the testingaccount@pucit.local user in the 
managementshell arsalanahmadvm GroupID client of the connected identity store.  

Get-UserRole -Identity testingaccount@pucit.local -

ClientName 'managementshell arslanahmadvm' 

Example 4 

This example retrieves the highest priority role of testingaccount user in the 
connected identity store. If the user has different roles in different GroupID clients, 
only the role having the highest priority is retrieved. 

Get-UserRole -Identity testingaccount 

Example 5 

This example retrieves information of all roles of testingaccount user in all client of 
the connected identity store.  

Get-UserRole -Identity testingaccount -All 



Chapter 4 - Identity Store Commands 

32 © 2022 Imanami | Now Part of Netwrix 
 

Example 6 

This example retrieves all roles of euser1 and euser2 users in the connected identity 
store through pipelining. 

'euser1', 'euser2', 'testingaccount' | Get-UserRole -All 

New-IdentityStore 

The commandlet New-IdentityStore creates a new identity store. This commandlet 
requires valid credentials and connectivity before it creates the store. However, this 
behavior can be overridden by specifying the IgnoreConnectionFail parameter. 

This cmdlet uses dynamic parameters based on the value of IdentityStoreType 
parameter. The parameters that become available depending on the values of 
IdentityStoreType are as follows: 

• IdentityStoreType: ActiveDirectory 
Domain: The connection string / domain of the active directory. 

• IdentityStoreType: WindowsAzure 
Domain: The domain of the Azure / Office365 store. 
AppId: The name of GroupID application registered in the Windows Azure 
admin panel. 

• IdentityStoreType: GSuite 
AdminUsername: The username of the administrator of the GSuite account. 
P12CertificatePath: The path where the certificate file (.p12 extension) 
downloaded from Google Admin Console is placed (including the filename). 

Syntax 
New-IdentityStore 

  -IdentityStoreType <IdentityStoreType> 

  -IdentityStoreName <String> 

  -Credential <PSCredential> 

  [-Description <String>] 

  [-PassThru] 

  [-IgnoreConnectionFail] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

 [<CommonParameters>] 



Chapter 4 - Identity Store Commands 

33 © 2022 Imanami | Now Part of Netwrix 
 

Required parameter 

• IdentityStoreType 

• IdentityStoreName 

• Credential 

Example 1 

This example create a new Active Directory based identity store by explicitly 
specifying the credentials for the new identity store. 

New-IdentityStore -IdentityStoreType ActiveDirectory -

IdentityStoreName DemoAdStore -UserName administrator -

Password webdir123R -Domain pucit.local 

For an Active Directory based identity store, Domain parameter is 
mandatory.  

Example 2 

This example creates a new Active Directory based identity store by providing the 
secure credentials. Here $cred is an object of type PSCredential which was created 
by Get-Credential commandlet. 

New-IdentityStore -IdentityStoreType ActiveDirectory -

IdentityStoreName DemoAdStore2 -Credential $cred -Domain 

pucit.local 

Example 2 

This example creates an Azure based identity store. 

New-IdentityStore -IdentityStoreType WindowsAzure -

IdentityStoreName DemoAzStore1 -UserName 

admin@mydomain.onmicrosoft.com -Password webdir123R -Domain 

mydomain.onmicrosoft.com -AppId 'aaaaaaaa-bbbb-cccc-dddd-

eeeeeeeeeeee' 

In case of an Azure based identity store, Domain and AppId parameters are 
mandatory.  

Example 3 

This example creates a Google Apps (G-Suite) based identity store. 

New-IdentityStore -IdentityStoreType GSuite -

IdentityStoreName DemoGStore1 -UserName svcacc@myproject-

111222.iam.gserviceaccount.com -AdminUsername 

admin@mydomain.com -P12CertificatePath 

'C:\Keys\gsuite\key.p12' 



Chapter 4 - Identity Store Commands 

34 © 2022 Imanami | Now Part of Netwrix 
 

For Google Apps based identity store, AdminUserName and 
P12CertificatePath parameters are mandatory. However, ‘Password’ 
parameter is ignored.  

Example 4 

This example creates Google Apps (G-Suite) based identity store using secure 
credentials. 

The $creds (an object of type PSCredential) object must contain the service account 
as username. The ‘Password’ property of this object can be anything but not empty. 

New-IdentityStore -IdentityStoreType GSuite -

IdentityStoreName DemoGStore2 -Credential $creds -

AdminUsername arslan@bibelotz.com -P12CertificatePath 

'C:\Keys\gsuite\key.p12' 

Example 5 

This example creates an Active Directory based identity store by ignoring the 
credential and connection details. 

New-IdentityStore -IdentityStoreType ActiveDirectory -

IdentityStoreName DemoAdStore3 -UserName nouser -Password 

wrongpwd -Domain nodomain.local -IgnoreConnectionFail 

Remove-IdentityStore 

The commandlet Remove-IdentityStore removes an identity store from GroupID.  

Syntax 
Remove-IdentityStore  

  [-IdentityStoreName] <String>  

  [-PassThru] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <PSCredential>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 



Chapter 4 - Identity Store Commands 

35 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

This example removes an identity store named DemoAzStore1. 

Remove-IdentityStore -IdentityStoreName DemoAzStore1 

Example 2 

This example removes DemoGStore1 and DemoGStore2 identity stores through the 
pipeline operator. 

'DemoGStore1', 'DemoGStore2' | Remove-IdentityStore 

Send-TestNotification 

The commandlet Send-TestNotification sends a test notification using the email 
addresses (specified From/To) through the SMTP server of the specified identity 
store. This cmdlet can be used to validate SMTP settings before configuring 
notifications or SMTP settings. 

Syntax 
Send-TestNotification 

  -IdentityStorename <string> 

  -SmtpServer <string> 

  -FromEmail <string> 

  -ToEmail <string> 

  -Port <int> 

  [-Credential <pscredential>] 

  [-UseSmptUserAuthentication] 

  [-SslEnabled] 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

• SmtpSesrver 

• FromEmail 

• Toemail 

• Port 



Chapter 4 - Identity Store Commands 

36 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

This example sends a test notification to euser1@pucit.local using the SMTP server 
configured on port 25 for user arsalanahmadsvm in AdStore1 identity store. 

Send-TestNotification -IdentityStorename AdStore9 -

SmtpServer arslanahmadsvm.pucit.local -Port 25 -FromEmail 

noreply@pucit.local -ToEmail euser1@pucit.local 

Set-IdentityStore 

The commandlet Set-IdentityStore modifies the identity store settings and 
configurations.  

Many parameters of this cmdlet require the user to specify schema attribute 
names. You can use Get-SchemaAttributes commandlet to retrieve a list of 
attributes available for an identity store. 

Syntax 
Set-IdentityStore  

  -IdentityStoreName <string>  

  -Credential <pscredential>  

  [-NewName <string>]  

  [-StoreDescription <string>]  

  [-StoreEnabled <bool>]  

  [-RoleOperation {add | remove | remove all}]  

  [-RoleName <string>]  

  [-RoleDescription <string>]  

  [-RolePriority <string>]  

  [-RoleCriteriaScope {Group | Container}]  

  [-RoleCriteriaDN <string>]  

  [-RoleCriteriaOperator {Or | And}]  

  [-RoleCriteriaFilters <string[][]>]  

  [-RolePermissions <string[]>]  

  [-RoleNameToCopy <string>]  

  [-DefaultAllowRolePermissions]  

  [-RoleReadonly]  

  [-RoleSystemOnly]  

  [-RoleDisabled] 

  [-GroupExpiryQuantity <string>] 

  [-GroupExpiryUnit {Never | Days | Weeks | Months | Years 

| Indefinite}]  

  [-GlmContainersPolicy {Exclude | Include}] 

  [-GlmContainers <string[]>] 

  [-GlmContainersOperation {add | remove | remove all}]  

  [-EnableSecurityGroupsExpiry] 

  [-DisableSecurityGroupsExpiry] 

  [-EnableExpiredGroupDeletion] 



Chapter 4 - Identity Store Commands 

37 © 2022 Imanami | Now Part of Netwrix 
 

  [-ExpiredGroupsDeletionInterval <string>] 

  [-DisableExpiredGroupDeletion] 

  [-EnableGUSLifecycle] 

  [-GroupExtensionPolicy {Extend | Reduce}] 

  [-GroupLifeDays <string>] 

  [-DisableGUSLifecycle] 

  [-EnableGroupAttestation] 

  [-DisableGroupAttestation] 

  [-DefaultApprover <string>] 

  [-GlmNotifyOwnersXDaysBeforeOperation {add | remove | 

remove all}] 

  [-GlmNotifyOwnersXDaysBefore <string[]>] 

  [-GlmEnableNotificationOfTodaysExpiry] 

  [-GlmDisableNotificationOfTodaysExpiry] 

  [-PrefixOperation {add | remove | remove all}] 

  [-Prefixes <string[]>] 

  [-HistoryTrackingOption {Nothing | All_Actions | 

Selected_Actions}]  

  [-HistoryActionsOperation {add | remove | remove all}] 

  [-HistorySelectedActions {OwnershipChange | 

AdditionalOwnerChange | ExpirationPolicyChange | 

GroupExpireRenew | QueryChange | SecurityTypeChange | 

ObjectCreated | ObjectDeleted | IdentityStoreHistory | 

SecurityRolesHistory | WorkflowsHistory}] 

  [-HistoryRetention {All | Last_30_Days | Last_60_Days | 

Last_90_Days | Last_120_Days | Last_6_Months | Last_1_Year 

| Last_2_Years | Last_5_Years}] 

  [-FileLoggingEvent {All | Debug | Info | Warn | Error | 

Off}] 

  [-WindowsLoggingEvent {FailureAudit | SuccessAudit | Info 

| Warn | Error}] 

  [-MaximumMembersPerGroup <string>] 

  [-WhenGroupMembershipThresholdReach {PreventUpdation | 

NestIntoChildGroups}] 

  [-EnableOrphanGroupsDeletion] 

  [-DisableOrphanGroupsDeletion] 

  [-EnableOutOfBoundsAlerts] 

  [-DisableOutOfBoundsAlerts] 

  [-MembershipCountThreshold <string>] 

  [-MembershipPercentageThreshold <string>] 

  [-ProfileValidationGroupDN <string>] 

  [-RegularProfileValidationLifecycle <string>] 

  [-EnableNewProfileValidationLifecycle] 

  [-DisableNewProfileValidationLifecycle] 

  [-NewProfileValidationLifecycle <string>] 

  [-ProfileValidationReminderOperation {add | remove}] 

  [-ProfileValidationReminders <string[][]>] 

  [-ProfileValidationExtensionPeriod <string>] 

  [-EnableAttributeUpdation] 

  [-DisableAttributeUpdation] 

  [-ProfileValidationAttributeName <string>] 

  [-ProfileValidationAttributeValue <string>] 



Chapter 4 - Identity Store Commands 

38 © 2022 Imanami | Now Part of Netwrix 
 

  [-EnableValidationDateRemoval] 

  [-DisableValidationDateRemoval] 

  [-ValidationDateRemovalInterval <string>] 

  [-EnrollmentEnabled <bool>] 

  [-AuthenticationTypeOperation {enable | disbale}] 

  [-AuthenticationType <string[]>] 

  [-QuestionOperation {add | remove | remove all}] 

  [-SecurityQuestions <string[]>] 

  [-PasswordExceptionOperation {add | remove | remove all}] 

  [-PasswordExceptions <string[][]>] 

  [-PasswordRuleOperation {add | remove | remove all}] 

  [-PasswordRules <string[]>] 

  [-DisallowingPasswordExceptionFilePath <string>] 

  [-EnableSWAuthenticationViaSecurityQuestions] 

  [-DisableSWAuthenticationViaSecurityQuestions] 

  [-SWAQuestionsOperation {add | remove}] 

  [-SWAQuestions <string[][]>] 

  [-EnableSWAuthenticationViaMobile] 

  [-DisableSWAuthenticationViaMobile] 

  [-SWAMobileAttribute <string>] 

  [- EnableSWAuthetnicationViaEmail] 

  [-DisableSWAuthenticationViaEmail] 

  [-SWEmailAttribute <string>] 

  [-SWAuthenticationFactor <string>] 

  [<CommonParameters>] 

You can use the Set-IdentityStore commandlet in a secure way by using the 
Credential parameter or by specifying the credentials through Username and 
Password parameters in plain text format which is not a secure way.  

Required parameter 

• IdentityStoreName 

• Credential / Username 

Example 1 

This example changes name of AdStore9 identity store to AdStore9_renamed.  

Set-IdentityStore -IdentityStoreName AdStore9 -NewName 

'AdStore9_renamed' -Credential $creds -Domain pucit.local 

Example 2 

This example enables the Email verification authentication type for the AdStore9 
identity store.  

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -AuthenticationTypeOperation 

enable -AuthenticationType 'Email Verification' 



Chapter 4 - Identity Store Commands 

39 © 2022 Imanami | Now Part of Netwrix 
 

Example 3 

This example disables enrollment for the AdSore9 identity store. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -EnrollmentEnabled $false 

Example 4 

This example modifies the group lifecycle expiry policy of the AdStore9 identity 
store to 21 days. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -GroupExpiryQuantity 21 

Example 5 

This example modifies the group lifecycle expiration policy of AdStore9 identity 
store to 10 months. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -GroupExpiryQuantity 10 -

GroupExpiryUnit Months 

Example 6 

This example sets the group lifecycle expiration policy of the AdStore9 identity 
store to ‘never’ by setting value of the GroupExpiryUnit parameter to Indefinite. 
Even though the GroupExpiryQuantity parameter is set to any value. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -GroupExpiryQuantity 10 -

GroupExpiryUnit Indefinite 

Example 7 

This example Configures containers policy and add containers. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -GlmContainersPolicy Include -

GlmContainersOperation add -GlmContainers 

'OU=WorkingOU,DC=pucit,DC=local','OU=ArslanAhmadOU,OU=Worki

ngOU,DC=pucit,DC=local' 

Example 8 

This example enables expiry of security groups, deletion of expired groups and sets 
interval of group deletion to 45 days.  

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -EnableSecurityGroupsExpiry -

EnableExpiredGroupDeletion -ExpiredGroupsDeletionInterval 

45 



Chapter 4 - Identity Store Commands 

40 © 2022 Imanami | Now Part of Netwrix 
 

Example 9 

This example enables GUS lifecycle and reduces group’s life if not used within 25 
days. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -EnableGUSLifecycle -

GroupExtensionPolicy Reduce -GroupLifeDays 25 

Example 10 

This example enables group attestation feature and sets the 
TestingAccoun@pucit.local user as the default approver for the AdStore9 identity 
store. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -EnableGroupAttestation -

DefaultApprover 'CN=Testing 

Account,CN=Users,DC=pucit,DC=local' 

Example 11 

This example sets the notifications (in number of days) before group expiry. It also 
enables today’s expiry reports as well as it enables the group attestation. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -EnableGroupAttestation -

GlmNotifyOwnersXDaysBeforeOperation add -

GlmNotifyOwnersXDaysBefore 1,3,10 -

GlmEnableNotificationOfTodaysExpiry 

Example 12 

This example creates a new role – DemoRole1 – for the AdStore9 identity store by 
specifying the minimum possible parameters. 

By default, all permissions are declined to the role created through this 
commandlet. Moreover, no criteria filters or scope (group / container) are 
added to the role. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -RoleOperation add -RoleName 

DemoRole1 -RolePriority 50 -RoleCriteriaScope Container 

Example 13 

This example creates a new security role – DemoRole1 – in AdStore9 identity store 
and a container is set as its role criteria.  

By default, all permissions are declined to the role created through this 
commandlet. 



Chapter 4 - Identity Store Commands 

41 © 2022 Imanami | Now Part of Netwrix 
 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -RoleOperation add -RoleName 

DemoRole1 -RolePriority 50 -RoleCriteriaScope Container -

RoleCriteriaDN 'ou=workingou,dc=pucit,dc=local' 

Example 14 

This example creates a new security role by specifying the container and criteria 
filters. 

The value for RoleCriteriaFilters parameter is specified as 3-length arrays. At first 
index, specify the filter name which can be either ‘name’ or ‘type’. Second index 
holds the operator which is one of the ‘is exactly’ and ‘is not’ operator. The third 
index of the array holds the client name or client type depending upon whether 
‘name’ or ‘type’ is specified at the first index. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -RoleOperation add -RoleName 

DemoRole4 -RolePriority 53 -RoleCriteriaScope Container -

RoleCriteriaDN 'ou=workingou,dc=pucit,dc=local' -

RoleCriteriaOperator Or -RoleCriteriaFilters @('name', 'is 

exactly', 'automate arslanahmadvm'), @('type', 'is not', 

'managementshell') 

Example 15 

This example creates a new security role by specifying the container, criteria filters 
and permissions. In this example, only Manage My Groups and Create User 
permissions are granted to the created role. 

By default, all the permissions except those specified in RolePermissions 
parameter are denied to the role created through this commandlet.  
 
The role permission names can be retrieved from Get-RolePermissionNames 
commandlet.  

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -RoleOperation add -RoleName 

DemoRole6 -RolePriority 55 -RoleCriteriaScope Container -

RoleCriteriaDN 'ou=workingou,dc=pucit,dc=local' -

RoleCriteriaOperator Or -RoleCriteriaFilters @('name', 'is 

exactly', 'automate arslanahmadvm'), @('type', 'is not', 

'managementshell') -RolePermissions 'manage my groups', 

'create user' 

Example 16 

This example creates a new security role by specifying a role criterion as container, 
criteria filters and permissions. 

By default, all the permissions except those specified in RolePermissions parameter 
are granted. This is due to the presence of DefaultAllowPermissions. In this 



Chapter 4 - Identity Store Commands 

42 © 2022 Imanami | Now Part of Netwrix 
 

example, only Manage my groups and Create user permissions are denied (and the 
remaining ones are granted) to the created role. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -RoleOperation add -RoleName 

DemoRole5 -RolePriority 54 -RoleCriteriaScope Container -

RoleCriteriaDN 'ou=workingou,dc=pucit,dc=local' -

RoleCriteriaOperator Or -RoleCriteriaFilters @('name', 'is 

exactly', 'automate arslanahmadvm'), @('type', 'is not', 

'managementshell') -RolePermissions 'manage my groups', 

'create user' –DefaultAllowRolePermissions 

Example 17 

This example creates two group prefixes – dev and ment –at identity store level.  

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -PrefixOperation add -Prefixes 

'dev', 'ment' 

Example 18 

This example tracks history of the selected actions for the AdStore9 identity store. 
The selected actions are additional owner change, expiration policy change and 
renewal of group. History retention period is also specified as last 120 days.  

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -HistoryTrackingOption 

Selected_Actions -HistoryActionsOperation add -

HistorySelectedActions AdditionalOwnerChange, 

ExpirationPolicyChange, GroupExpireRenew -HistoryRetention 

Last_120_Days 

Example 19 

This example configures file and windows logging settings for the AdStore9 identity 
store. File logging is set to Debug level and windows logging to FailureAudit.  

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -FileLoggingEvent Debug -

WindowsLoggingEvent FailureAudit 

Example 20 

This example configures out of bounds settings for the AdStore9 identity store.  

Maximum 500 members are allowed in each group and when the threshold reaches, 
the members will be nested into child groups. The orphan groups will be deleted. 
Do not update the membership and alert if the percentage in membership exceeds 
by more than 65% and either the current or new membership exceeds 200 
members. 



Chapter 4 - Identity Store Commands 

43 © 2022 Imanami | Now Part of Netwrix 
 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -MaximumMembersPerGroup 500 -

WhenGroupMembershipThresholdReach NestIntoChildGroups -

EnableOrphanGroupsDeletion -EnableOutOfBoundsAlerts -

MembershipCountThreshold 200 -MembershipPercentageThreshold 

65 

Example 21 

This example configures profile validation settings. This example specifies that 
profile validation policies should be applied on group specified by distinguished 
name 
‘CN=ProfileValidation1,OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local’. 
Regular profiles should be validated within 60 days. New profiles should also be 
validated within 15 days. Validation extension period should be 7 days. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -ProfileValidationGroupDN 

'CN=ProfileValidation1,OU=ArslanAhmadOU,OU=WorkingOU,DC=puc

it,DC=local' -RegularProfileValidationLifecycle 60 -

EnableNewProfileValidationLifecycle -

NewProfileValidationLifecycle 15 -

ProfileValidationExtensionPeriod 7 

Example 22 

This example configures profile validation settings. This example cmdlet adds two 
profile validation reminders. It also causes an attribute named ‘info’ to be updated 
with value ‘Validation expired’ when the profile validation is expired. It also causes 
the validation date to be removed after 5 days (after which the policies for new 
users are applied to the users). 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -

ProfileValidationReminderOperation add -

ProfileValidationReminders @('fourth', 45), @('fifth', 60) 

-EnableAttributeUpdation -ProfileValidationAttributeName 

info -ProfileValidationAttributeValue 'Validation expired' 

-EnableValidationDateRemoval -ValidationDateRemovalInterval 

5 

Example 23 

This example adds two security questions in the AdStore9 identity store.  

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -QuestionOperation add -

SecurityQuestions 'When was the first time you felt that it 

was raining even though it was not raining?', 'What would 

happen if there were no GroupID?' 



Chapter 4 - Identity Store Commands 

44 © 2022 Imanami | Now Part of Netwrix 
 

Example 24 

This example configures password options. 

This example enforces the following password policy: Do not allow passwords 
starting with either ‘webdir123R’ or containing ‘123R’ and allow only those 
passwords matching '^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[^\da-zA-Z]).{8,15}$' regular 
expression pattern. 

‘PasswordExceptions’ parameter accepts 2-Length arrays having at first index the 
operator and at second index the string. Allowed operators contain: ‘equals’; 
‘startswith’; ‘endswith’; ‘contains’; and ‘regexp’. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -PasswordExceptionOperation add 

-PasswordExceptions @('startswith', 'webdir123R'), 

@('contains', '123R') -PasswordRuleOperation add -

PasswordRules '^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[^\da-

zA-Z]).{8,15}$' 

Example 25 

This example configures the second way authentication via security questions. 

Set-IdentityStore -IdentityStoreName AdStore9 -Credential 

$creds -Domain pucit.local -

EnableSWAuthenticationViaSecurityQuestions -

SWAQuestionsOperation add -SWAQuestions @('when was the 

first time you felt that it is raining even though it was 

not raining?', 'info') 

Set-IdentityStoreRole 

Use the Set-IdentityStoreRole commandlet to modify properties of a security role in 
an identity store.  

Syntax 
Set-IdentityStoreRole  

  -RoleName <string> 

  -IdentityStoreName <string> 

  [-NewName <string>] 

  [-Description <string>] 

  [-Priority <int>] 

  [-Enabled <bool>] 

  [-CriteriaScope {Group | Container}] 

  [-DistinguishedName <string>] 

  [-Operator {Or | And}] 

  [-CriteriaFilters <string[][]>] 

  [-FilterOperation {Add | Remove | RemoveAll}] 



Chapter 4 - Identity Store Commands 

45 © 2022 Imanami | Now Part of Netwrix 
 

  [-Permissions <string[]>] 

  [-PermissionOperation {GrantAll | GrantExcept | Grant | 

Deny | DenyExcept | DenyAll}] 

  [<CommonParameters>] 

Required parameter 

• RoleName 

• IdentityStoreName 

Example 1 

This example modifies properties of the DemoRole1 role in AdStore9 identity store. 
It renames the role to DemoRole1_Renamed and sets its priority to 45. 

Set-IdentityStoreRole -RoleName DemoRole1 -

IdentityStoreName AdStore9 -NewName DemoRole1_Renamed -

Priority 45 -Enabled $True  

Example 2 

This example modifies the DemoRole2 role in the AdStore9 identity store. The scope 
of the role is set to a container and removes filters specified in CriteriaFilters 
parameter.  

Set-IdentityStoreRole -RoleName DemoRole2 -

IdentityStoreName AdStore9 -CriteriaScope Container -

DistinguishedName 'ou=workingou,dc=pucit,dc=local' -

FilterOperation Remove -CriteriaFilters @('type', 'is not', 

'managementshell') 

Example 3 

This example modifies the permissions assigned to the DemoRole2 role. Two 
permissions Manage any group and create smart group are being assigned  

Set-IdentityStoreRole -RoleName DemoRole2 -

IdentityStoreName AdStore9 -PermissionOperation Grant -

Permissions 'Manage any group', 'create smart group' 

Set-MessagingServer 

The commandlet Set-MessagingServer configures a messaging system in identity 
store. The SmtpServer parameter requires the server name of the messaging system 
to be specified. Get-AvailableMessagingServers commandlet can be used to retrieve 
the server names of the messaging systems. 

This commandlet also has some parameters that appear depending on the value of 
the Provider parameter.  



Chapter 4 - Identity Store Commands 

46 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Set-MessagingServer 

  -IdentityStoreName <string> 

  -Provider {o365 | gsuite | exchange2010 | exchange2013 | 

exchange2016 | exchange2019} 

  -Credential <pscredential> 

  -SmtpServer <string> 

  [-Priority <int>] 

  [-Disabled] 

  [<CommonParameters>] 

 

Set-MessagingServer 

  -IdentityStoreName <string> 

  -Provider {o365 | gsuite | exchange2010 | exchange2013 | 

exchange2016 | exchange2019} 

  -UserName <string> 

  -SmtpServer <string> 

  [-Password <string>] 

  [-Priority <int>] 

  [-Disabled] 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

• Provider 

• Credential 

• SmtpServer 

Example 1 

This example modifies the messaging system of the AsStore9 identity store to 
Microsoft Office 365. 

Set-MessagingServer -IdentityStoreName AdStore9 -Provider 

o365 -UserName admin@mydomain.onmicrosoft.com -Password 

webdir123R -SmtpServer ps.outlook.com -Domain 

mydomain.onmicrosoft.com -AppId 'a1b2c3d4-e5f6-f6e5-d4c3-

b2a1b2c3d4e5' 



Chapter 4 - Identity Store Commands 

47 © 2022 Imanami | Now Part of Netwrix 
 

Example 2 

This example modifies the messaging system of the AdStore9 identity store to 
Google Apps (G-Suite). 

Set-MessagingServer -IdentityStoreName AdStore9 -Provider 

gsuite -UserName groupid@testproject-

219211.iam.gserviceaccount.com -AdminUsername 

arslan@bibelotz.com -SmtpServer imap.gmail.com -

P12CertificatePath 'C:\Keys\gsuite\key.p12' 

Example 3 

This example modifies the messaging system of the AdStore9 identity store to 
Exchange 2010. 

Set-MessagingServer -IdentityStoreName AdStore9 -Provider 

exchange2010 -UserName administrator -Password webdir123R - 

SmtpServer arslanahmadsvm.pucit.local -Domain pucit.local 

Set-Notifications 

Use the Set-Notifications commandlet to modify the notification settings of an 
identity store. 

Syntax 
Set-Notifications 

  -IdentityStoreName <string> 

  [-PrimaryRecepients <string[]>] 

  [-CarbonCopy <string[]>]   

  [-NotifyLoggedInUsers <bool>] 

  [-NotifyOwners <bool>] 

  [-NotifyModifiedObject <bool>] 

  [-NotifyPublicGroupOwner <bool>] 

  [-NotifyAddedMembers <bool>] 

  [-PasswordPortalUrl <string>] 

  [-NotifyUserGroupJoinML <bool>]   

  [-NotifyUserGroupLeaveML <bool>] 

  [-XDaysBeforeLeaveNotificationML <int>] 

  [-NotifyUserGroupJoinMB <bool>]   

  [-NotifyUserGroupLeaveMB <bool>] 

  [-XDaysBeforeLeaveNotificationMB <int>] 

  [<CommonParameters>] 

Required parameter 

• IdentitySoreName 



Chapter 4 - Identity Store Commands 

48 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

This example sets the primary and carbon copy (CC) recipients of the notifications 
for the AdStore9 identity store. Additionally, it also sets the group owners / 
managers and public group owners as the notification recipients. 

Set-Notifications -IdentityStoreName AdStore9 -

PrimaryRecepients 'euser1@pucit.local', 

'euser2@pucit.local' -CarbonCopy 'exmb1@pucit.local' -

NotifyOwners $true -NotifyPublicGroupOwner $true 

Example 2 

This example configures recipients for membership lifecycle notifications i.e. it 
notifies the user upon joining a group and intimates the user before 7 days it is 
removed as a member from the group. 

Set-Notifications -IdentityStoreName AdStore9 -

NotifyUserGroupJoinML $true -XDaysBeforeLeaveNotificationML 

7 

Set-SmtpServer 

The Set-SmtpServer commandlet configures an SMTP server for an identity store. 

Syntax 
Set-SmtpServer  

  -IdentityStorename <string> 

  -SmtpServer <string> 

  -FromEmail <string> 

  -ToEmail <string> 

  -Port <int> 

  [-Credential <pscredential>] 

  [-UseSmptUserAuthentication] 

  [-SslEnabled] 

  <CommonParameters>] 

Required parameter 

• IdentityStorename 

• SmtpServer 

• FromEmail 

• ToEmail 

• Port  



Chapter 4 - Identity Store Commands 

49 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

This example configures arsalanahmadsvm.pucit.local SMTP server for AdStore9 
identity store on port 25. Email address for sending notification is specifies as 
noreply@pucit.local and euser1@pucit.local as recipient email address. 

Set-SmtpServer -IdentityStorename AdStore9 -SmtpServer 

arslanahmadsvm.pucit.local -FromEmail noreply@pucit.local -

ToEmail euser1@pucit.local -Port 25 

Example 2 

This example configures arsalanahmadsvm.pucit.local SMTP server that is SSL 
(Secured Socket Layer) enabled for AdStore identity store. The SMTP server is 
configured on port 555 and it uses credentials stored in the $creds variable. 

Set-SmtpServer -IdentityStorename AdStore9 -SmtpServer 

smtp.office365.com -FromEmail 

admin@mydomain.onmicrosoft.com -ToEmail 

admin@mydomain.onmicrosoft.com -Port 555 -

UseSmptUserAuthentication -SslEnabled -Credential $creds 

 



 

50 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 5 - User Commands 
This chapter covers commandlets for performing user related tasks such as: 

• Get-User: retrieves user that match the given criteria. 

• Get-UserEnrollment: displays information about the status of user 
enrollment. 

• New-User: creates a new user. 

• Remove-User: removes a user from Directory. 

• Set-User: modifies a user in Directory 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of Parameters table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Get-User  

Use the Get-User commandlet to retrieve basic information about a user that match 
your given criteria. 

Syntax 
Get-User  

  [[-Identity] <string[]>]  

  [-SearchContainer <string[]>]  

  [-SearchContainersScopeList <string>]  

  [-ShouldReturnCollection]  

  [-MaxItemsToDisplay <int>]  

  [-ObjectType <string[]>]  

  [-LdapFilter <string>]  

  [-SmartFilter <string>]  

  [-ServerFilter <string>]  

  [-AttributesToLoad <string[]>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 



Chapter 5 - User Commands  

51 © 2022 Imanami | Now Part of Netwrix 
 

Required parameter 

• None 

Example  

The following command retrieves the specified user from the connected identity 
store. 

Get-User -Identity "Osama" 

Get-UserEnrollment 

The commandlet Get-UserEnrollment retrieves enrollment information of a user. 

Syntax 
Get-UserEnrollment 

  -Identity <string> 

  [-EnrollmentTypes {None | Mobile | SecurityQuestions | 

Email | Authenticator | LinkAccount | PhoneID | Yubikey | 

WindowsHello | All | Any}] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

If user is enrolled, this cmdlet will enlist the authentication type(s) the user is 
enrolled with. 

Get-UserEnrollment -Identity euser1 

Example 2 

Check whether the specified user is enrolled in the specified enrollment type(s). 

Get-UserEnrollment -Identity euser1 -EnrollmentTypes 

SecurityQuestions, Email 

Example 3 

This example gets user enrollment information through the pipeline operator. 

'euser1', 'euser2' | Get-UserEnrollment 



Chapter 5 - User Commands  

52 © 2022 Imanami | Now Part of Netwrix 
 

New-User 

Use the New-User commandlet to create a new user in Directory. Most user 
properties can be directly added by using the parameters of this commandlet. 

Syntax 
New-User  

  -Name <string>  

  -OrganizationalUnit <string>  

  -SAMAccountName <string>  

  -Password <string>  

  -FirstName <string>  

  -LastName <string>  

  -DisplayName <string>  

  [-UPNSuffix <string>]  

  [-Title <string>]  

  [-City <string>]  

  [-State <string>]  

  [-Zip <string>]  

  [-Country <string>]  

  [-Initials <string>]  

  [-Address <string>]  

  [-Office <string>] 

  [-Business <string>]  

  [-Business2 <string>]  

  [-Alias <string>]  

  [-EmailAddress <string>]  

  [-Department <string>] 

  [-Company <string>]  

  [-Mobile <string>]  

  [-Home <string>]  

  [-AccountDisabled <string>]  

  [-PasswordNeverExpires <string>]  

  [-PasswordForceChange <string>]  

  [-Manager <string[]>]  

  [-HomePage <string>]  

  [-Assistant <string>]  

  [-Notes <string>]  

  [-MailEnabled <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameters 

• Name  

• OrganizationalUnit 



Chapter 5 - User Commands  

53 © 2022 Imanami | Now Part of Netwrix 
 

• SAMAccountName  

• Password  

• FirstName  

• LastName 

• DisplayName 

Example 

The following command creates a new user in the container specified by the 
OrganizationalUnit parameter. The command also specifies the logon name, 
password, first name, last name and display name of the new user. 

New-User -Name "OsamaUser" -OrganizationalUnit 

"OU=osamamu,DC=naveed,DC=local" -SAMAccountName 

"OsamaUser11" -Password "webdir123R" -FirstName "Osama" -

LastName "Shahbaz" -DisplayName "Osama" 

Remove-User 

Use the Remove-User commandlet to delete user from directory.  

Syntax 
Remove-User  

  -Identity <string[]>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following command deletes a user with the specified name. 

Remove-User -Identity "osama" 



Chapter 5 - User Commands  

54 © 2022 Imanami | Now Part of Netwrix 
 

Set-User  

The Set-User commandlet modifies a user in Directory. Most user properties can be 
directly modified by using the parameters of this commandlet. 

Syntax 
Set-User  

  -Identity <string>  

  [-FirstName <string>]  

  [-LastName <string>]  

  [-Title <string>]  

  [-City <string>]  

  [-State <string>]  

  [-Zip <string>]  

  [-Country <string>]  

  [-Initials <string>]  

  [-Address <string>]  

  [-Office <string>]  

  [-Business <string>]  

  [-Add <hashtable[]>]  

  [-Remove <hashtable[]>]  

  [-Replace <hashtable[]>]  

  [-Clear <string[]>]  

  [-Department <string>]  

  [-Company <string>]  

  [-Assistant <string>]  

  [-HomePage <string>]  

  [-Alias <string>]  

  [-EmailAddress <string>]  

  [-Description <string>]  

  [-Notes <string>]  

  [-AdministrativeNotes <string>]  

  [-DisplayName <string>]  

  [-SimpleDisplayName <string>]  

  [-CustomAttribute1 <string>]  

  [-CustomAttribute2 <string>]  

  [-CustomAttribute3 <string>]  

  [-CustomAttribute4 <string>]  

  [-CustomAttribute5 <string>]  

  [-CustomAttribute6 <string>]  

  [-CustomAttribute7 <string>]  

  [-CustomAttribute8 <string>]  

  [-CustomAttribute9 <string>]  

  [-CustomAttribute10 <string>]  

  [-CustomAttribute11 <string>]  

  [-CustomAttribute12 <string>]  

  [-CustomAttribute13 <string>]  

  [-CustomAttribute14 <string>]  

  [-CustomAttribute15 <string>]  



Chapter 5 - User Commands  

55 © 2022 Imanami | Now Part of Netwrix 
 

  [-Delimiter <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following command modifies the display name of the specified user. 

Set-User -Identity "Osama" -DisplayName "Osama123" 

 



 

56 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 6 - User Lifecycle Commands 
User lifecycle process ensures the accuracy of users’ information in the directory, 
this chapter covers commandlets for performing user lifecycle related tasks such as: 

• Extend-User: extend the user lifecycle for specified period of days of an 
expired user. 

• Get-Status: provides the status of specified user as per the profile validation 
criteria. 

• Reinstate-User: activates or disables a user. 

• Terminate-DirectReports: terminates direct reports of user. 

• Transfer-DirectReports: transfers direct reports of user. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of Parameters table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Extend-User 

Use the Extend-User commandlet to extend the user lifecycle of an expired user for 
specified period of days for the connected identity store.  

Syntax 
Extend-User  

  -Identity <string[]> 

  [-IdentityStoreId <Int32>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <PSCredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 



Chapter 6 - User Lifecycle Commands 

57 © 2022 Imanami | Now Part of Netwrix 
 

Example 

The following commandlet extends the profile validation period for the specified 
user. The period is extended up to the specified days for the connected identity 
store. 

Extend-User -Identity 

"CN=ImanamiUser100,OU=BulkUsers,DC=gid,DC=local" 

Get-Status 

Use the Get-Status command to know the status of specified user as per the profile 
validation criteria defined for the connected identity store.  

Syntax 
Get-Status  

  -Manager <string>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Manager 

Example 

The following command provides information about the status of the specified user 
as per the criteria defined for user life cycle for the connected identity store. It also 
provides information on the number of days left to validate the profile again. 

Get-Status –Manager "Richard" 

Reinstate-User 

Use the Reinstate-User command to activate or disable a user. Users can be 
disabled for any of the following reasons: 

• Users that have been disabled for not validating their profiles within the 
required period. 

• Users that have been terminated or disabled by their respective managers. 

• Users that are disabled in the directory. 

An administrator or member of Helpdesk role can reinstate a disabled user.  



Chapter 6 - User Lifecycle Commands 

58 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Reinstate-User  

  -Identity <string>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following command reinstates the specified disabled of the connected identity 
store. 

Reinstate-User -Identity "Farzana Jafar" 

Terminate-DirectReports 

Use the Terminate-DirectRreports command to terminate user(s). Specify manager 
of the user you want to terminate.  

You can perform this function in directory as per your role and permissions. 
 

Syntax 
Terminate-DirectReports  

  -DirectReports <string[]>  

  -Manager <string>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameters 

• DirectReports  

• Manager 



Chapter 6 - User Lifecycle Commands 

59 © 2022 Imanami | Now Part of Netwrix 
 

Example 

The following command terminates the specified users in the connected identity 
store. Their Manager is also specified in the command who will receive notification 
as per the defined workflow. 

Terminate-DirectReports -DirectReports "Irfan","Naeem" -

Manager "Raja" 

Transfer-DirectReports  

Use the Transfer-DirectReports commandlet to transfer direct report(s) in the 
connected identity store. Specify manager who will approve this transfer.  

You can perform this function in directory as per your role and permissions. 
 

Syntax 
Transfer-DirectReports  

  -DirectReports <string[]>  

  -Manager <string>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameters 

• DirectReports 

• Manager 

Example 

The following command transfers two direct reports to Manager Robin. 

Transfer-DirectReports -DirectReports "F Jafar","azram" -

Manager "Robin" 

 



 

60 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 7 - Contact Commands 
This chapter covers commandlets for performing contact related tasks such as: 

• Get- Contact: retrieves a contact that match the given criteria. 

• New-Contact: creates a new contact. 

• Remove- Contact: removes a contact from Directory. 

• Set- Contact: modifies a contact in Directory. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of Parameters table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Get-Contact 

Use the Get-Contact commandlet to retrieve basic information about a contact that 
match your given criteria. 

Syntax 
Get-Contact  

  [[-Identity] <string[]>] 

  [-SearchContainer <string[]>] 

  [-SearchContainersScopeList <string>] 

  [-ShouldReturnCollection] 

  [-MaxItemsToDisplay <int>] 

  [-ObjectType <string[]>] 

  [-LdapFilter <string>]  

  [-SmartFilter <string>] 

  [-ServerFilter <string>] 

  [-AttributesToLoad <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• None 



Chapter 7 - Contact Commands 

61 © 2022 Imanami | Now Part of Netwrix 
 

Example 

The following command retrieves contact from the specified container of the 
connected identity store. 

Get-Contact -SearchContainer 

"OU=osamamu,DC=naveed,DC=local" 

New-Contact 

Use the New-Contact commandlet to create a new contact in Directory. Most 
contact properties can be directly added by using the parameters of this 
commandlet. 

Syntax 
New-Contact  

  -Name <string>  

  -OrganizationalUnit <string>  

  -FirstName <string>  

  -LastName <string>  

  -DisplayName <string>  

  [-UPNSuffix <string>]  

  [-Title <string>]  

  [-City <string>]  

  [-State <string>]  

  [-Zip <string>]  

  [-Country <string>]  

  [-Initials <string>]  

  [-Address <string>]  

  [-Office <string>]  

  [-Business <string>]  

  [-Business2 <string>]  

  [-Alias <string>]  

  [-EmailAddress <string>]  

  [-Department <string>]  

  [-Company <string>]  

  [-Mobile <string>]  

  [-Home <string>]  

  [-Manager <string[]>]  

  [-HomePage <string>]  

  [-Assistant <string>]  

  [-Notes <string>]  

  [-MailEnabled <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 



Chapter 7 - Contact Commands 

62 © 2022 Imanami | Now Part of Netwrix 
 

Required parameters 

• Name  

• OrganizationalUnit  

• FirstName  

• LastName  

• DisplayName 

Example 

The following command creates a new contact in the container specified by the 
OrganizationalUnit parameter. The command also specifies the logon name, first 
name, last name and display name of the new contact. 

New-Contact -Name "OsamaContact" -OrganizationalUnit 

"OU=osamamu,DC=naveed,DC=local" -FirstName "OsamaContact" -

LastName "OsamaContact" -DisplayName "OsamaContact" 

Remove-Contact 

Use the Remove-Contact commandlet to delete contact from Directory. 

Syntax 
Remove-Contact  

  -Identity <string[]>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following command deletes the specified contact from the connected identity 
store. 

Remove-Contact -Identity "OsamaContact" 



Chapter 7 - Contact Commands 

63 © 2022 Imanami | Now Part of Netwrix 
 

Set-Contact 

The Set-User commandlet modifies a user in Directory. Most user properties can be 
directly modified by using the parameters of this commandlet. 

Syntax 
Set-Contact  

  -Identity <string>  

  [-FirstName <string>]  

  [-LastName <string>]  

  [-Title <string>]  

  [-City <string>]  

  [-State <string>]  

  [-Zip <string>]  

  [-Country <string>]  

  [-Initials <string>]  

  [-Address <string>]  

  [-Office <string>]  

  [-Business <string>]  

  [-Add <hashtable[]>]  

  [-Remove <hashtable[]>]  

  [-Replace <hashtable[]>]  

  [-Clear <string[]>]  

  [-Department <string>]  

  [-Company <string>]  

  [-Assistant <string>]  

  [-HomePage <string>]  

  [-Alias <string>]  

  [-EmailAddress <string>]  

  [-Description <string>]  

  [-Notes <string>]  

  [-AdministrativeNotes <string>]  

  [-DisplayName <string>]  

  [-SimpleDisplayName <string>]  

  [-CustomAttribute1 <string>]  

  [-CustomAttribute2 <string>]  

  [-CustomAttribute3 <string>]  

  [-CustomAttribute4 <string>]  

  [-CustomAttribute5 <string>]  

  [-CustomAttribute6 <string>]  

  [-CustomAttribute7 <string>]  

  [-CustomAttribute8 <string>]  

  [-CustomAttribute9 <string>]  

  [-CustomAttribute10 <string>]  

  [-CustomAttribute11 <string>]  

  [-CustomAttribute12 <string>]  

  [-CustomAttribute13 <string>]  

  [-CustomAttribute14 <string>]  

  [-CustomAttribute15 <string>]  



Chapter 7 - Contact Commands 

64 © 2022 Imanami | Now Part of Netwrix 
 

  [-Delimiter <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following command modifies the city of the specified contact. 

Set-Contact -Identity "OsamaContact" -City "Islamabad" 

 



 

65 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 8 - Group Commands 
This chapter covers commandlets for performing tasks related to managed and 
unmanaged groups: 

• Convert-Group: converts an unmanaged group to a Smart Group. 

• ConvertTo-StaticGroup:  

• Expire Group: expires the group temporarily. 

• Get-Group: retrieves groups from one or more containers. 

• Move-Group: moves a group to a different container in the same domain or 
in a different domain. 

• New-Group: creates an unmanaged group. 

• Remove-Group: deletes a managed or unmanaged group or Dynasty in 
Directory. 

• Renew Group: reactivates an expired group. 

• Set-Group: modifies an unmanaged group in Directory. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of ParametersError! R
eference source not found. table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Convert-Group 

This command converts an unmanaged group to a Smart Group.  

GroupID Management Shell prompts for the identity of the unmanaged group you 
want to convert into a Smart Group. After executing the commandlet displays the 
status that update is successful as shown in the following snapshot. 



Chapter 8 - Group Commands 

66 © 2022 Imanami | Now Part of Netwrix 
 

 
Figure 4: GroupID Management Shell window 

The converted Smart Group will not have an LDAP query attached to it. You have to 
define it manually.  

Syntax 
Convert-Group  

  -Identity <string>  

  [-SearchContainers <string[]>]  

  [-SearchContainersScopeList <string[]>] 

  [-ObjectTypes <string[]>]  

  [-LdapFilter <string>]  

  [-IncludeRecipients <string[]>]  

  [-ExcludeRecipients <string[]>] 

  [-Storage <string>]  

  [-DataSourceType <string>]  

  [-SystemDSN <string>]  

  [-TableOrView <string>]  

  [-DataSourceUserName <string>]  

  [-DataSourcePassword <string>]  

  [-FilePath <string>]  

  [-Server <string>]  

  [-Port <int>] 



Chapter 8 - Group Commands 

67 © 2022 Imanami | Now Part of Netwrix 
 

  [-LDAPSearchContainer <string>]  

  [-DataSourceName <string>]  

  [-DataSourceQuery <string>]  

  [-WindowsAuthentication] 

  [-EnableUpdate <string>]  

  [-IsPasswordExpirySmartDL]  

  [-ExpirationRange <int>]  

  [-DomainExpiration <int>] 

  [-MaximumPasswordAge <int>]  

  [-MinimumPasswordAge <int>]  

  [-IncludeDisabledUsers <string>] 

  [-IncludePasswordNeverExpireUsers <string>]  

  [-SendEmail <string>]  

  [-EmailTemplatePath <string>] [-Script <string>] 

  [-ScriptFilePath <string>]  

  [-Provider_Container <string>]  

  [-PowerTools <ArrayList>]  

  [-KeyMapAD <string>] 

  [-KeyMapDB <string>]  

  [-ExtendGroupLife]  

  [-ExpirationPolicy <int>]  

  [-MsExchCoManagedByLink <string[]>]  

  [-IsExpired <string>]  

  [-GroupScope <string>]  

  [-Type <string>]  

  [-Prefix <string>]  

  [-SecurityType <string>]  

  [-ManagedBy <string[]>]  

  [-MaxSendSize <int>]  

  [-AcceptMessagesOnlyFrom <string[]>]  

  [-RejectMessagesFrom <string[]>] 

  [-AcceptMessagesOnlyFromGroups <string[]>]  

  [-RejectMessagesFromGroup <string[]>]  

  [-AdditionalOwners <string[]>] 

  [-NotifyOptOutAdditionalOwners <string[]>] 

  [-ExpansionServer <string>] 

  [-BypassOwnersPolicy <string>] 

  [-MsExchRequireAuthToSendTo <string>] 

  [-HiddenFromAddressListEnabled <string>] 

  [-SendOofMessageToOriginatorEnabled <string>] 

  [-HideMembershipFromAddressListEnabled <string>] 

  [-ReportToManagerEnabled <string>] 

  [-ReportToOriginatorEnabled <string>] 

  [-UpdateMembershipByManagerEnabled <string>] 

  [-Add <hashtable[]>] 

  [-Remove <hashtable[]>] 

  [-Replace <hashtable[]>] 

  [-Clear <string[]>] 

  [-Department <string>] 

  [-Company <string>] 

  [-Assistant <string>] 

  [-HomePage <string>] 



Chapter 8 - Group Commands 

68 © 2022 Imanami | Now Part of Netwrix 
 

  [-Alias <string>] 

  [-EmailAddress <string>] 

  [-Description <string>] 

  [-Notes <string>] 

  [-AdministrativeNotes <string>] 

  [-DisplayName <string>] 

  [-SimpleDisplayName <string>] 

  [-CustomAttribute1 <string>] 

  [-CustomAttribute2 <string>] 

  [-CustomAttribute3 <string>] 

  [-CustomAttribute4 <string>] 

  [-CustomAttribute5 <string>] 

  [-CustomAttribute6 <string>] 

  [-CustomAttribute7 <string>] 

  [-CustomAttribute8 <string>] 

  [-CustomAttribute9 <string>] 

  [-CustomAttribute10 <string>] 

  [-CustomAttribute11 <string>] 

  [-CustomAttribute12 <string>] 

  [-CustomAttribute13 <string>] 

  [-CustomAttribute14 <string>] 

  [-CustomAttribute15 <string>] 

  [-Delimiter <string>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following commandlet converts a group Clay2 group to a Smart Group using 
the credentials of current logged-on user.  

Convert-Group -Identity "Clay2" -Credential $Cred 

Expire-Group 

The Expire-Group commandlet expires a group temporarily. All notifications to the 
expired group will be stopped and all group related functionalities will be on halt. 

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 



Chapter 8 - Group Commands 

69 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Expire-Group  

  -Identity <string[]>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following command expires the specified group from the connected identity 
store. 

Expire-Group –Identity "CN=Training,OU=Local 

Recruiting,DC=HR,DC=Imanami,DC=US" 

Get-Group 

This Get-Group commandlet retrieves both managed and unmanaged groups that 
are in one or more containers on a domain matching the given criteria.  

Syntax 
Get-Group  

  [[-Identity] <string[]>]  

  [-SearchContainer <string[]>]  

  [-SearchContainersScopeList <string>] 

  [-ShouldReturnCollection]  

  [-MaxItemsToDisplay <int>]  

  [-ObjectType <string[]>]  

  [-LdapFilter <string>]  

  [-SmartFilter <string>]  

  [-ServerFilter <string>]  

  [-AttributesToLoad <string[]>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• None 



Chapter 8 - Group Commands 

70 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

The following command retrieves all groups in the base container specified by the 
SearchContainer parameter including sub-containers, using the credentials of 
current user logged-on to the identity store. 

Get-Group -SearchContainer 

"OU=Recuriting,DC=HR,DC=Imanami,DC=US" 

Example 2 

The following command retrieves all groups with a display name beginning with 
the S in the base containers specified by the SearchContainer parameter including 
sub-containers of the first base container and excluding sub-containers of the 
second one using the credentials set in the $Credentials environment variable. For 
information about setting credentials, see Appendix A. 

Get-Group -SearchContainer 

"OU=Recuriting,DC=HR,DC=Imanami,DC=US","OU=OutSourcing,DC=H

R,DC=Imanami,DC=US" -SearchContainersScopeList "2","1" -

LdapFilter "(DisplayName = S*)" -Credential $Cred 

Example 3 

The following command retrieves all Smart Groups from the connected identity 
store with Security Type Private and John Smith as their additional owner. The 
OUT-NULL commandlet is useful for preventing the retrieved groups' information 
from appearing on the console. 

Get-Group -SmartFilter "(SecurityType = Private)" | Set-

Group -AdditionalOwners 

"CN=JohnSmith,DC=HR,DC=Imanami,DC=US" | OUT-NULL 

Move-Group 

The Move-Group commandlet enables you to move a group to a different container 
in the same domain or in a different domain within the same forest. Movement of 
groups across forests is not allowed. 

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 



Chapter 8 - Group Commands 

71 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Move-Group  

  -Identity <string>  

  -DestinationContainer <string>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameters 

• Identity  

• DestinationContainer 

Example 1 

The following command moves the group Training to the Local Recruiting 
organizational unit using the credentials of current user logged-on to the identity 
store. 

Move-Group -Identity 

"CN=Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

DestinationContainer "OU=Local 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" 

Example 2 

The following command moves the group Training to the OffShore Recruiting 
organizational unit. The command uses the credentials set in the $Credentials 
environment variable for moving a group. For information about setting credentials, 
see Appendix A. 

Move-Group -Identity "CN=Training,OU=Local 

Recruiting,DC=HR,DC=Imanami,DC=US" -DestinationContainer 

"OU=OffShore 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

Credential $Cred 

New-Group 

Use the New-Group commandlet to create a new unmanaged group in a particular 
container in directory.  

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 



Chapter 8 - Group Commands 

72 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
New-Group  

  -SamAccountName <string>  

  -Name <string>  

  -OrganizationalUnit <string>  

  -GroupScope <string>  

  -Type <string> 

  -SecurityType <string>  

  [-GroupAlias <string>]  

  [-ManagedBy <string[]>]  

  [-DisplayName <string>]  

  [-MailEnabled <string>]  

  [-Description <string>]  

  [-AdditionalOwners <string[]>]  

  [-NotifyOptOutAdditionalOwners <string[]>]  

  [-Members <string[]>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameters 

• SamAccountName 

• Name  

• OrganizationalUnit 

• GroupScope  

• Type 

• SecurityType 

Example 1 

The following command creates a new unmanaged, mail-disabled, global, 
distribution group in the container specified by the OrganizationalUnit parameter, 
using the credentials of current user logged-on to the identity store. 

New-Group -Name "Event Management" -OrganizationalUnit 

"OU=Local Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" 

-GroupAlias "EventManagement" -SamAccountName "Event 

Management" -GroupScope "Global Group" -Type "Distribution" 



Chapter 8 - Group Commands 

73 © 2022 Imanami | Now Part of Netwrix 
 

Example 2 

The command below creates a new mail-enabled, domain-local, semi-private, 
security group in the container specified by the OrganizationalUnit parameter, using 
the credentials set in the $Credentials environment variable. For information about 
setting credentials, see Appendix A. 

New-Group -Name "Enrollment" -OrganizationalUnit "OU=Local 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

GroupAlias "Enrollment" -MailEnable True -SamAccountName 

"Enrollment" -GroupScope "Domain Local" -Type "Security" -

SecurityType "Semi_Private" 

Remove-Group 

Use this commandlet to delete a group (managed or unmanaged) or Dynasty in 
directory. Removing a parent Dynasty using this commandlet removes all its 
children as well.  

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 

Syntax 
Remove-Group  

  -Identity <string[]>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

The following command removes the Event Management group, using the 
credentials of current user logged-on to the identity store. 

Remove-Group -identity "OU=Event 

Management,OU=Recruiting,DC=HR,DC=Imanami,DC=US" 



Chapter 8 - Group Commands 

74 © 2022 Imanami | Now Part of Netwrix 
 

Example 2 

The following command first shows the changes that will be made by executing the 
command (a deletion). The command uses the credentials set in the $Credentials 
environment variable to perform the deletion. For information about setting 
credentials, see Appendix A. 

Remove-Group -identity "OU=Event 

Management,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

Credential $Cred 

Renew-Group 

The Renew-Group commandlet re-activates an expired group.  

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 

Syntax 
Renew-Group  

  -Identity <string[]>  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 

The following command renews the specified group in the connected identity store. 

Renew-Group -Identity "CN=Training,OU=Local 

Recruiting,DC=HR,DC=Imanami,DC=US" 

Set-Group 

The Set-Group commandlet modifies an unmanaged group in directory. However, 
you can use this commandlet to modify those parameters of a Smart Group that are 
native attributes of an unmanaged group in Directory. For modifying Smart Group-
specific attributes, you can use the Set-SmartGroup commandlet. 

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 



Chapter 8 - Group Commands 

75 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Set-Group  

  -Identity <string>  

  [-ExtendGroupLife]  

  [-ExpirationPolicy <int>]  

  [-MsExchCoManagedByLink <string[]>]  

  [-IsExpired <string>]  

  [-GroupScope <string>]  

  [-Type <string>]  

  [-Prefix <string>]  

  [-SecurityType <string>]  

  [-ManagedBy <string[]>]  

  [-MaxSendSize <int>]  

  [-AcceptMessagesOnlyFrom <string[]>]  

  [-RejectMessagesFrom <string[]>]  

  [-AcceptMessagesOnlyFromGroups <string[]>]  

  [-RejectMessagesFromGroup <string[]>]  

  [-AdditionalOwners <string[]>] 

  [-NotifyOptOutAdditionalOwners <string[]>]  

  [-ExpansionServer <string>]  

  [-BypassOwnersPolicy <string>]  

  [-MsExchRequireAuthToSendTo <string>]  

  [-HiddenFromAddressListEnabled <string>]  

  [-SendOofMessageToOriginatorEnabled <string>]  

  [-HideMembershipFromAddressListEnabled <string>]  

  [-ReportToManagerEnabled <string>]  

  [-ReportToOriginatorEnabled <string>]  

  [-UpdateMembershipByManagerEnabled <string>]  

  [-Add <hashtable[]>]  

  [-Remove <hashtable[]>]  

  [-Replace <hashtable[]>]  

  [-Clear <string[]>]  

  [-Department <string>]  

  [-Company <string>]  

  [-Assistant <string>]  

  [-HomePage <string>]  

  [-Alias <string>]  

  [-EmailAddress <string>]  

  [-Description <string>]  

  [-Notes <string>]  

  [-AdministrativeNotes <string>]  

  [-DisplayName <string>]  

  [-SimpleDisplayName <string>]  

  [-CustomAttribute1 <string>]  

  [-CustomAttribute2 <string>]  

  [-CustomAttribute3 <string>]  

  [-CustomAttribute4 <string>]  

  [-CustomAttribute5 <string>]  

  [-CustomAttribute6 <string>]  

  [-CustomAttribute7 <string>]  



Chapter 8 - Group Commands 

76 © 2022 Imanami | Now Part of Netwrix 
 

  [-CustomAttribute8 <string>]  

  [-CustomAttribute9 <string>]  

  [-CustomAttribute10 <string>]  

  [-CustomAttribute11 <string>] 

  [-CustomAttribute12 <string>]  

  [-CustomAttribute13 <string>]  

  [-CustomAttribute14 <string>]  

  [-CustomAttribute15 <string>]  

  [-Delimiter <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

The following command changes the expiration policy of the Training group to 60 
days and assigns a manager to the group, using the credentials of current user 
logged-on to the identity store. 

Set-Group -Identity 

"CN=Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

ExpirationPolicy "60" -ExtendGroupLife -ManagedBy "CN=John 

Smith,CN=Users,DC=HR,DC=Imanami,DC=US"  

Example 2 

The following command expires the group Training, using the credentials set in the 
$Credentials environment variable. For information about setting credentials,  
see Appendix A. 

Set-Group -Identity 

"CN=Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

IsExpired True -Credential $Cred 

Example 3 

The following command gets all groups in the container Recruiting, clears their 
additional owner lists and sets their expiration policy to Never Expire. The OUT-
NULL commandlet has been used to prevent the retrieved groups information from 
appearing on the console. 

Get-Group -searchcontainer 

"OU=Recruiting,DC=HR,DC=Imanami,DC=US" | Set-Group -

AdditionalOwners "" -ExpirationPolicy "0" -ExtendGroupLife 

| OUT-NULL  



Chapter 8 - Group Commands 

77 © 2022 Imanami | Now Part of Netwrix 
 

Example 4 

The following command removes two additional owners from the Training group 
and adds three new additional owners to the group and excludes an additional 
owner from receiving e-mail notifications. 

Set-Group -Identity 

"CN=Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Remove 

@{AdditionalOwners = 

"CN=Roger_Manson,OU=ResignedStaff,DC=HR,DC=Imanami,DC=US","

KillenEdward"} -Add @{AdditionalOwners = 

"RobinSoto","MeganFox","DollyChan"} -

NotifyOptOutAdditionalOwners "RobinSoto" 

 



 

78 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 9 - Smart Group Commands 
This chapter covers commandlets for managing Smart Groups and GroupID 
configuration settings. The commandlets are: 

• ConvertTo-StaticGroup: converts a Smart Group or a dynasty into a static 
group. 

• Get-Options: retrieves GroupID configuration settings and their 
corresponding values. 

• Get-SmartGroup: retrieves Smart Groups and Dynasties that match the given 
criteria. 

• New-SmartGroup: creates a new Smart Group (managed group) in Directory. 

• Set-Options: modifies the values of GroupID configuration settings. 

• Set-SmartGroup: modifies a Smart Group in Directory. 

• Update-Group: modifies the membership of a Smart Group or Dynasty 
according to the results returned by the LDAP query. 

• Upgrade-Group: upgrades managed (Smart Groups and Dynasties) and non-
managed Groups of GroupID versions 7, 8 and 9 to GroupID 10.0. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of ParametersError! R

eference source not found. table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

ConvertTo-StaticGroup 

The ConvertTo-StaticGroup commandlet converts an existing Smart Group or a 
dynasty to a static group by removing the attributes of the Smart Group or the 
dynasty. 



Chapter 9 - Smart Group Commands 

79 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
ConvertTo-StaticGroup 

  -IdentityStoreName <string> 

  [-GroupName <string[]>] 

  [-SearchContainers <string[]>] 

  [<CommonParameters>] 

Required parameter 

• IdentityStoreName 

Example 1 

The following commandlets converts a Smart Group in AdStore9 identity store 
Smart_Training to a static group. 

ConvertTo-StaticGroup -IdentityStoreName AdStore9 -

GroupName "Smart_Training" -SearchContainers 

"OU=Recruiting,OU=HR,DC=Imanami,DC=US","OU=Outsourcing,OU=H

R,DC=Imanami,DC=US" 

Get-Options 

GroupID stores its configuration settings in your system registry. The Get-Options 
commandlet helps you to retrieve these settings along with their corresponding 
values.  

Syntax 
Get-Options 

  [[-Options] <string[]>] 

  [-AttributesToLoad <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The following cmdlet lists down the specified GroupID settings with their values, 
from the registry, using the credentials of current user logged-on to the identity 
store. 



Chapter 9 - Smart Group Commands 

80 © 2022 Imanami | Now Part of Netwrix 
 

Get-Options –Options "DLPrefix", "SMTPServer", 

"NotificationFrom" 

Example 2 

The following command lists the options from the registry specified by the Options 
parameter, using the credentials set in the $Credentials environment variable. For 
information about setting credentials, see Appendix A. 

Get-Options –Options "DLPrefix", "SMTPServer", 

"NotificationFrom" –Credential $Cred 

Get-SmartGroup 

Use this commandlet to retrieve Smart Groups and Dynasties that match your given 
criteria in one or more containers on a domain. 

Syntax 
Get-SmartGroup  

  [[-Identity] <string[]>] 

  [-SmartGroupType <string>] 

  [-TopLevelOnly <bool>] 

  [-GroupIDVersion <string>] 

  [-SearchContainer <string[]>] 

  [-SearchContainersScopeList <string>] 

  [-ShouldReturnCollection] 

  [-MaxItemsToDisplay <int>] 

  [-ObjectType <string[]>] 

  [-LdapFilter <string>] 

  [-SmartFilter <string>] 

  [-ServerFilter <string>] 

  [-AttributesToLoad <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 



Chapter 9 - Smart Group Commands 

81 © 2022 Imanami | Now Part of Netwrix 
 

Required parameter 

• None 

Example 1 

The following command retrieves only Smart Groups (not Dynasties) in the base 
container specified by the SearchContainer parameter including sub-containers, 
using the credentials of current user logged-on to the identity store. 

Get-SmartGroup -SmartGroupType "SmartGroup" -

SearchContainer "OU=Recuriting,DC=HR,DC=Imanami,DC=US"  

Example 2 

The following command retrieves both Smart Groups and Dynasties that have 
display names starting with S in the containers specified by the SearchContainer 
parameter including sub-containers of the first base container and excluding sub-
containers of the second one, using the credentials specified in the $Credentials 
environment variable. For information about setting credentials, see Appendix A. 

Get-SmartGroup -SearchContainer 

"OU=Recuriting,DC=HR,DC=Imanami,DC=US","OU=OutSourcing,DC=H

R,DC=Imanami,DC=US" -SearchContainersScopeList "2","1" -

LdapFilter "(DisplayName = S*)" -Credential $Cred 

New-SmartGroup 

This commandlet helps you to create a new Smart Group (managed group) in 
Directory. A Smart Group is a conventional distribution or security group that 
dynamically maintains its membership based on the rules applied by a user-defined 
LDAP query.  

A Smart Group can also be defined as a Password Expiry group. A Password Expiry 
group is a dynamic group whose membership is based on password policy 
conditions defined by the administrator. The LDAP query defined for a Smart Group 
can be updated any time using the Set-SmartGroup commandlet. When the LDAP 
query is changed, you must update the group once to modify its membership 
according to the changes made to the query. For information about updating a 
group, see Update-Group.  

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 



Chapter 9 - Smart Group Commands 

82 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
New-SmartGroup  

  -SamAccountName <string>  

  -Name <string>  

  -OrganizationalUnit <string>  

  -GroupScope <string>  

  -Type <string>  

  -SecurityType <string>  

  [-SearchContainers <string[]>]  

  [-SearchContainersScopeList <string[]>] 

  [-ObjectTypes <string[]>] 

  [-LdapFilter <string>] 

  [-IncludeRecipients <string[]>] 

  [-ExcludeRecipients <string[]>] 

  [-Storage <string>] 

  [-DataSourceType <string>] 

  [-SystemDSN <string>] 

  [-TableorView <string>] 

  [-DataSourceUserName <string>] 

  [-DataSourcePassword <string>] 

  [-FilePath <string>] 

  [-Server <string>] 

  [-Port <int>] 

  [-LDAPSearchContainer <string>] 

  [-DataSourceName <string>] 

  [-DataSourceConnection <string>] 

  [-DataSourceQuery <string>] 

  [-KeyMapDB <string>] 

  [-KeyMapAD <string>] 

  [-WindowsAthentication] 

  [-IsPasswordExpiryGroup] 

  [-DomainExpiration <int>] 

  [-ExpirationRange <int>] 

  [-IncludeDisabledUsers <string>] 

  [-IncludePasswordNeverExpireUsers <string>] 

  [-Script <string>] 

  [-ScriptFilePath <string>] 

  [-Sun_Container <string>] 

  [-GroupAlias <string>] 

  [-ManagedBy <string[]>] 

  [-DisplayName <string>] 

  [-MailEnabled <string>] 

  [-Description <string>] 

  [-AdditionalOwners <string[]>] 

  [-NotifyOptOutAdditionalOwners <string[]>] 

  [-Members <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 



Chapter 9 - Smart Group Commands 

83 © 2022 Imanami | Now Part of Netwrix 
 

Required parameters 

• SamAccountName 

• Name  

• OrganizationalUnit 

• GroupScope  

• Type  

• SecurityType 

Example 1 

The following command creates a new mail-enabled, universal, distribution Smart 
Group in the container specified by the OrganizationalUnit parameter, using the 
credentials of current user logged-on to the identity store. 

New-SmartGroup  -OrganizationalUnit 

"OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Name 

"Smart_Training" -GroupAlias "Smart_Training" -MailEnable 

True -SamAccountName "Smart_Training" -GroupScope 

"Universal Group" -Type "Distribution" 

In Microsoft Exchange 2007 and later, mail-enabled groups are created with 
Universal Group Scope. 

Example 2 

The following command creates a new universal, distribution Smart Group in the 
container specified by the OrganizationalUnit parameter and builds its membership 
by retrieving those objects from the containers specified in the SearchContainers 
parameter excluding sub-containers whose Display Names match the Names in a 
text file.  

New-SmartGroup -OrganizationalUnit 

"OU=Recruiting,OU=HR,DC=Imanami,DC=US" -Name 

"Smart_Enrollment" -SamAccountName "Smart_Enrollment" -

GroupScope "Universal Group" -Type "Distribution" -

SearchContainers 

"OU=Recruiting,OU=HR,DC=Imanami,DC=US","OU=Outsourcing,OU=H

R,DC=Imanami,DC=US" -SearchContainersScopeList "1","1" -

LdapFilter "(displayName=Database.[Name])" -DataSourceType 

"Microsoft Text Driver (*.txt,*.csv)" -FilePath 

"D:\Inputs\Names.txt" -DataSourceQuery "SELECT [Name] FROM 

[Names.txt]" 



Chapter 9 - Smart Group Commands 

84 © 2022 Imanami | Now Part of Netwrix 
 

Example 3 

The following command creates a new local, distribution, Password Expiry group, 
using the credentials set in the $Credentials environment variable. For information 
about setting credentials, see Appendix A. Those users will be members of the 
group who have passwords aged 20 days or older. Disabled users will also be 
included in the membership. 

New-SmartGroup -OrganizationalUnit 

"OU=Recruiting,OU=HR,DC=Imanami,DC=US" -Name 

"Password_Expiry" -GroupAlias "Password_Expiry" -

SamAccountName "Password_Expiry" -GroupScope "Domain Local" 

-Type "Distribution" -IsPasswordExpiryGroup -

DomainExpiration 30 -ExpirationRange 10 -

IncludeDisabledUsers True -Credential $Cred 

Set-Options 

Use this commandlet to modify the values of GroupID configuration settings in the 
registry. 

Syntax 
Set-Options  

  [-AutomateLoggingLevel <string>]  

  [-LoggingLevel <string>] 

  [-CleanupApprovedRequests <string>] 

  [-CleanupDeniedRequests <string>] 

  [-CleanupPendingRequests <string>] 

  [-DefaultGroupDeletionTimeAfterExpiry <int>] 

  [-DefaultUnusedGroupsExpirationTime <int>] 

  [-DefaultExpirationPolicy <int>]  

  [-DefaultMaximumNumberOfMembers <int>] 

  [-DefaultMaximumNumberOfMembersToDisplay <int>]  

  [-DefaultNumberOfOwnersToDisplay <int>] 

  [-DefaultReportToMessageOrginator <string>]  

  [-DefaultReportToOwner <string>]  

  [-DefaultRequestDeletionTime <int>]   

  [-DefaultStartWithGlobalCatalogInQueryDesigner <string>] 

  [-DeleteEmpty <string>]  

  [-DeleteNestedOrphanGroups <string>]  

  [-DynastyManagerAsMember <string>]  

  [-DeleteExpiredGroups <string>]  

  [-ExpireUnusedGroups <string>] 

  [-GroupUsageLifecycleEnabled <string>]  

  [-DeleteRequests <string>] 

  [-EnforceOutOfBounds <string>] 

  [-ExcludeOUs  <string>] 

  [-ExtensionDataAttributeName <string>] 



Chapter 9 - Smart Group Commands 

85 © 2022 Imanami | Now Part of Netwrix 
 

  [-FirstRun <string>] 

  [-FromEmailAddress <string>] 

  [-GenerateOnedayToExpiryReport <string>]  

  [-GenerateSevenDaysToExpiryReport <string>] 

  [-GenerateThirtyDaysToExpiryReport <string>]  

  [-IncludeExcludeOUs <List[string]>]  

  [-GroupNamePrefixes <List[string]>] 

  [-HideMembership <string>] 

  [-DisplayNestedOwnership <string>] 

  [-InheritedAttrs <List[string]>] 

  [-MaximumMembersToDisplay <int>] 

  [-MaximumOwnersToDisplay <int>] 

  [-MinimumOwnersToDisplay <int>] 

  [-NumberOfOwnersToDisplay <int>]  

  [-OutOfBoundsAlertEnabled <string>] 

  [-OutOfBoundsMinimum <int>] 

  [-OutOfBoundsPercentage <int>] 

  [-PageSize <int>] 

  [-Prefix <string>] 

  [-ReportingLoggingLevel <string>] 

  [-SmartDLNotes <string>] 

  [-SmtpServer <string>]  

  [-SelfServiceLoggingLevel <string>]  

  [-SupportEmail <string>] 

  [-SupportURL <string>] 

  [-SynchronizeLoggingLevel <string>] 

  [-UpdateChildren <string>] 

  [-DefaultGroupApprover <string>] 

  [-ConfiguredExchange <int>] 

  [-EmailProviderDomain <string>] 

  [-MaximumAliasLength <int>] 

  [-PasswordCenterSupportURL <string>] 

  [-KeepHistoryOption <int>] 

  [-PasswordPortalUrl <string>] 

  [-SmtpUserName <string>] 

  [-SmtpPassword <string>] 

  [-UseSmtpUserAuthentication <string>] 

  [-SmtpSSLEnabled <string>] 

  [-SmtpPort <int>] 

  [-DataServiceURL <string>] 

  [-SQLServerName <string>] 

  [-SQLDatabaseName <string>] 

  [-SQLUserName <string>] 

  [-SQLPassword <string>] 

  [-SQLAuthenticationType <int>] 

  [-WindowsUserName <string>] 

  [-WindowsPassword <string>] 

  [-IsSecurityGroupExpirationPluginEnabled <string>] 

  [-ChangeTrackerActions <List[string]>] 

  [-GUsExtendGroupsLife <bool>] 

  [-GUsReduceGroupsLife <bool>] 

  [-GUsUnusedGroupsTime <int>] 



Chapter 9 - Smart Group Commands 

86 © 2022 Imanami | Now Part of Netwrix 
 

  [-GUsusedGroupsTime <int>] 

  [-GLmGroupDeletionInterval <int>] 

  [-Delimiter <string>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The following command modifies the value of the setting 
MaximumMembersToDisplay to 4000. 

Set-options -optionnames "MaximumMembersToDisplay" -

OptionValues "4000" 

Example 2 

The following command specifies the SMTP server configurations using the 
credentials set in the $Credentials environment variable. For information about 
setting credentials, see Appendix A. 

Set-Options -SmtpServer "smtp.gmail.com" -FromEmailAddress 

"ImanamiHR@gmail.com" -UseSmtpUserAuthentication True -

SmtpUserName "ImanamiHR@gmail.com" -SmtpPassword "Abc123*" 

-SmtpPort 587 -SmtpSSLEnabled True 

Example 3 

The following command sets multiple values for the setting InhertiedAttrs. 

Set-Options -InheritedAttrs 

"ManagedBy","UnauthOrig","DLMemRejectPerms","DLMemSubmitPer

ms","AuthOrig","DelivContLength" 

Example 4 

The following command sets GroupID to track history for Additional Owner Change, 
Enrollment and Expiration Policy Change. 

Set-Options -ChangeTrackerActions 

"AdditionalOwnerChange#Enrollment#ExpirationPolicyChange" 



Chapter 9 - Smart Group Commands 

87 © 2022 Imanami | Now Part of Netwrix 
 

Example 5 

The following command enables the group usage lifecycle and set it to reduce the 
life of distribution groups that have not been sent an e-mail in the last 30 days.  

Set-Options -GroupUsageLifecycleEnabled True -

ExpireUnusedGroups True -DefaultUnusedGroupsExpirationTime 

"30" 

Set-SmartGroup 

The Set-SmartGroup commandlet modifies a Smart Group in Directory. Attributes 
that are common to both Smart Groups and unmanaged groups can also be 
modified using the Set-Group commandlet.  

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 

Syntax 
Set-SmartGroup  

  -Identity <string>  

  [-SearchContainers <string[]>]  

  [-SearchContainersScopeList <string[]>] 

  [-ObjectTypes <string[]>] 

  [-LdapFilter <string>]  

  [-IncludeRecipients <string[]>]  

  [-ExcludeRecipients <string[]>] 

  [-Storage <string>] 

  [-DataSourceType <string>] 

  [-SystemDSN <string>] 

  [-TableOrView <string>] 

  [-DataSourceUserName <string>] 

  [-DataSourcePassword <string>] 

  [-FilePath <string>] 

  [-Server <string>] 

  [-Port <int>] 

  [-LDAPSearchContainer <string>] 

  [-DataSourceName <string>] 

  [-DataSourceQuery <string>] 

  [-WindowsAuthentication] 

  [-EnableUpdate <string>] 

  [-IsPasswordExpirySmartDL] 

  [-ExpirationRange <int>] 

  [-DomainExpiration <int>] 

  [-MaximumPasswordAge <int>] 

  [-MinimumPasswordAge <int>]  

  [-IncludeDisabledUsers <string>] 

  [-IncludePasswordNeverExpireUsers <string>] 



Chapter 9 - Smart Group Commands 

88 © 2022 Imanami | Now Part of Netwrix 
 

  [-SendEmail <string>] 

  [-EmailTemplatePath <string>] 

  [-Script <string>] 

  [-ScriptFilePath <string>] 

  [-Provider_Container <string>] 

  [-PowerTools <ArrayList>] 

  [-KeyMapAD <string>] 

  [-KeyMapDB <string>] 

  [-ExtendGroupLife] 

  [-ExpirationPolicy <int>] 

  [-MsExchCoManagedByLink <string[]>] 

  [-IsExpired <string>] 

  [-GroupScope <string>] 

  [-Type <string>] 

  [-Prefix <string>] 

  [-SecurityType <string>] 

  [-ManagedBy <string[]>] 

  [-MaxSendSize <int>] 

  [-AcceptMessagesOnlyFrom <string[]>] 

  [-RejectMessagesFrom <string[]>] 

  [-AcceptMessagesOnlyFromGroups <string[]>]  

  [-RejectMessagesFromGroup <string[]>] 

  [-AdditionalOwners <string[]>] 

  [-NotifyOptOutAdditionalOwners <string[]>] 

  [-ExpansionServer <string>] 

  [-BypassOwnersPolicy <string>] 

  [-MsExchRequireAuthToSendTo <string>] 

  [-HiddenFromAddressListEnabled <string>] 

  [-SendOofMessageToOriginatorEnabled <string>] 

  [-HideMembershipFromAddressListEnabled <string>] 

  [-ReportToManagerEnabled <string>] 

  [-ReportToOriginatorEnabled <string>] 

  [-UpdateMembershipByManagerEnabled <string>] 

  [-Add <hashtable[]>] 

  [-Remove <hashtable[]>] 

  [-Replace <hashtable[]>] 

  [-Clear <string[]>] 

  [-Department <string>] 

  [-Company <string>] 

  [-Assistant <string>] 

  [-HomePage <string>] 

  [-Alias <string>] 

  [-EmailAddress <string>] 

  [-Description <string>] 

  [-Notes <string>] 

  [-AdministrativeNotes <string>]  

  [-DisplayName <string>] 

  [-SimpleDisplayName <string>] 

  [-CustomAttribute1 <string>] 

  [-CustomAttribute2 <string>] 

  [-CustomAttribute3 <string>] 

  [-CustomAttribute4 <string>] 



Chapter 9 - Smart Group Commands 

89 © 2022 Imanami | Now Part of Netwrix 
 

  [-CustomAttribute5 <string>] 

  [-CustomAttribute6 <string>] 

  [-CustomAttribute7 <string>] 

  [-CustomAttribute8 <string>] 

  [-CustomAttribute9 <string>] 

  [-CustomAttribute10 <string>] 

  [-CustomAttribute11 <string>] 

  [-CustomAttribute12 <string>] 

  [-CustomAttribute13 <string>] 

  [-CustomAttribute14 <string>] 

  [-CustomAttribute15 <string>]  

  [-Delimiter <string>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential  <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

The following command modifies a Smart Group by adding Administrator statically 
in the group membership, regardless of whether it is returned by the query, using 
the credentials of current user logged-on to the identity store.  

Set-SmartGroup -Identity 

"CN=Smart_Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

IncludeRecipients 

"CN=Administrator,CN=Users,DC=HR,DC=Imanami,DC=US" 

Example 2 

The following command modifies the LDAP query of a Smart Group to retrieve all 
mail-enabled objects that are members of the group Training, using the credentials 
set in the $Credentials environment variable. For information about setting 
credentials, see Appendix A. 

Set-SmartGroup -Identity 

"CN=Smart_Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

ObjectTypes 

"ExchangeUsers","ExternalUsers","ExternalContacts","EmailGr

oups" -LdapFilter "(MemberOf=Training)" -Credential $Cred 



Chapter 9 - Smart Group Commands 

90 © 2022 Imanami | Now Part of Netwrix 
 

Example 3  

The following command modifies the Password Expiry group using the credentials 
of current user logged-on to the identity store. To be added are those users who 
reside in the containers specified in the Add parameter (including sub-containers) 
and whose password is 20 days or more older and set to never expire.  

Set-SmartGroup -Identity 

"CN=Password_Expiry,OU=Recruiting,OU=HR,DC=Imanami,DC=US" -

Add 

@{SearchContainers="OU=Recruiting,OU=HR,DC=Imanami,DC=US#2"

,"OU=Outsourcing,OU=HR,DC=Imanami,DC=US#2" -

IsPasswordExpirySmartDL -DomainExpiration 30 -

ExpirationRange 10 -IncludePasswordNeverExpireUsers True] 

Example 4 

The following command modifies the membership of a Smart Group based on the 
script given in the script file.  

Set-SmartGroup -Identity 

"CN=Smart_Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" –

ScriptFilePath "c:\MembershipUpdateScript.vb" 

Example 5 

The following command overwrites the Includes and Excludes lists of a Smart 
Group by adding two groups in the Includes list and one group in the Excludes list.  

Set-SmartGroup -Identity "CN=imrantest, OU=Testit, 

DC=minion,DC=local" –Replace @{Includes = 

"CN=Shizasss,CN=Users,DC=minion,DC=Local","CN=ShezaOfc,CN=U

sers,DC=minion,DC=Local" ; 

Excludes="CN=Administrator,CN=Users,DC=minion,DC=local" , 

"CN=TestMailbox,CN=Users,DC=minion,DC=local"] 

Exampe 6 

The following command modifies lists of members a Smart Group can accept and 
reject messages from. 

Set-SmartGroup -Identity 

"CN=Smart_Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" –

Add @{ RejectMessagesFrom = 

"CN=Roger_Manson,OU=ResignedStaff,DC=HR,DC=Imanami,DC=US"} 

-Add @(AcceptMessageOnlyFrom = 

"CN=PKWing,OU=Recruiting,DC=HR,DC=Imanami,DC=US","CN=USWing

,OU=Recruiting,DC=HR,DC=Imanami,DC=US") 



Chapter 9 - Smart Group Commands 

91 © 2022 Imanami | Now Part of Netwrix 
 

Update-Group 

The Update-Group commandlet modifies the membership of a Smart Group or 
Dynasty according to the results returned by the LDAP query. This query is 
associated with the group or Dynasty creation and can be updated anytime using 
the Set-SmartGroup commandlet. When the Update-Group commandlet is executed, 
it searches the directory to find recipients matching the criteria defined in the query 
and modifies the group membership list with the returned recipients, if any.  

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 

Syntax 
Update-Group  

  -Identity <string>  

  [-SearchContainer <string>]  

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

The following command updates all the GroupID group(s), by using the credentials 
of a locally logged on user, in a container specified by the "SearchContainer" 
parameter. 

Update–Group –SearchContainer “OU=Sales,DC=Contoso,DC=com” 

Example 2 

The following command updates all Smart Groups and Dynasties present in the 
container Training, using the credentials set in the $Credentials environment 
variable. For information about setting credentials, see Appendix A. 

Update-Group -SearchContainer 

"OU=Training,DC=HR,DC=Imanami,DC=US" -Credential $Cred 



Chapter 9 - Smart Group Commands 

92 © 2022 Imanami | Now Part of Netwrix 
 

Upgrade-Group 

Upgrade-Group commandlet upgrades managed (Smart Groups and Dynasties) and 
non-managed Groups of GroupID 7, 8 and 9 to GroupID 10.0 version. 

GroupID upgrades groups from the connected database to the current 
instance of GroupID. This database can be an upgraded version or copied 
database from the previous GroupID versions i.e. GroupID 7, 8 and 9. 

Syntax 
Upgrade-Group  

  -SQLServer <string>  

  -Database <string>  

  -SQLUserName <string>  

  -Password <string>  

  -GroupIDVersion <int>  

  [-SearchContainer <List[string]>] 

  [-SearchContainerScopeList <List[int]>] 

  [-Identity <List[string]>] 

  [-GroupType <List[int]>] 

  [-KeepUserHistory] 

  [-ExtensionDataAttributes <List[string]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameters 

• SQLServer  

• Database  

• SQLUserName  

• Password 

• GroupIDVersion 

Example 1 

The following command upgrades a GroupID 7.0 Smart Group GIDSmart1 using the 
database GroupID7SR1 which resides on SQL server sqlexpress. To upgrade the smart 
group to GroupID 10.0 version, the command uses sa user account of the specified 
SQL server.  



Chapter 9 - Smart Group Commands 

93 © 2022 Imanami | Now Part of Netwrix 
 

Upgrade-Group -Identity "GIDsmart1" -SQLServer 

"msvr02\sqlexpress" -SQLUserName "sa" -Database 

"GroupID7SR1" -Password "support123R" -GroupIDVersion "7.0" 

-GroupType "2" 

Example 2 

The following command upgrades all GroupID 7.0 Smart Groups in AutomateJobs 
container using GroupID7SR1 database which resides on SQL server sqlexpress. To 
upgrade the smart groups to GroupID 10.0 version, the command uses sa user 
account of the specified SQL server. 

Upgrade-Group -SearchContainer 

"OU=AutomateJobs,DC=Demo1,DC=com" -SQLServer 

"msvr02\sqlexpress" -SQLUserName "sa" -Database 

"GroupID7SR1" -Password "support123R" -GroupIDVersion "7.0" 

-GroupType "2" 

Example 3 

The following command upgrades all GroupID 7.0 dynasties in AutomateJobs 
container using GroupID7SR1 database which resides on SQL server sqlexpress. To 
upgrade the dynasties to GroupID 10.0 version, the command uses sa user account 
of the specified SQL server. 

Upgrade-Group -SearchContainer 

"OU=AutomateJobs,DC=Demo1,DC=com" -SQLServer 

"msvr02\sqlexpress" -SQLUserName "sa" -Database 

"GroupID7SR1" -Password "support123R" -GroupIDVersion "7.0" 

-GroupType "3" 

Example 4 

The following command upgrades non managed groups in GID7 container using 
GroupID7SR1 database which resides on SQL server sqlexpress. To upgrade the non-
managed groups to GroupID 10.0 version, the command uses sa user account of the 
specified SQL server. 

Upgrade-Group -Identity "departsales" -SearchContainer 

"OU=GID7,DC=Demo1,DC=com" -SQLServer "msvr02\sqlexpress" -

SQLUserName "sa" -Database "GroupID7SR1" -Password 

"support123R" -GroupIDVersion "7.0" -GroupType "1" 

 



 

94 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 10 - Dynasty Commands 
This chapter covers commandlets for managing dynasties.  

• New-Dynasty: creates a new dynasty. 

• Set-Dynasty: modifies a Dynasty or its children. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of ParametersError! R

eference source not found. table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

New-Dynasty 

The New-Dynasty commandlet creates a new Dynasty in Directory. A Dynasty is a 
Smart Group that can create and maintain the membership of other Smart Groups. A 
Dynasty retrieves data from Directory in the same manner as a Smart Group, but it 
divides the result set into child groups based on group-by field values.  

You can specify multiple group-by fields. For instance, with the group-by fields 
Country, State, and City, this commandlet creates a group for every distinct country 
value, then for each state within a country, and finally for each city in that state. All 
created child groups inherit those attributes of the parent that are set in the 
InheritedAttrs option. This attribute list can be viewed using the Get-Options 
commandlet.  

You can view events related to this commandlet in GroupID Management Console, 
on the History tab of the object's Properties dialog box. 

Syntax 
New-Dynasty  

  -TopManager <string>  

  -SamAccountName <string>  

  -Name <string>  

  -OrganizationalUnit <string>  

  -GroupScope <string>  

  -Type <string>  

  -SecurityType <string>  

  [-ChildContainer <string[]>] 



Chapter 10 - Dynasty Commands 

95 © 2022 Imanami | Now Part of Netwrix 
 

  [-Filters <string[]>]  

  [-Separator <string[]>] 

  [-ExcludeNestedLists <string>] 

  [-CreateFlatManagerialList <string>] 

  [-IncludeManagerAsMember <string>]   

  [-ChildPath <string>] 

  [-DynastyInheritance <bool>] 

  [-SearchContainers <string[]>] 

  [-SearchContainersScopeList <string[]>] 

  [-ObjectTypes <string[]>] 

  [-LdapFilter <string>] 

  [-IncludeRecipients <string[]>] 

  [-ExcludeRecipients <string[]>] 

  [-Storage <string>] 

  [-DataSourceType <string>] 

  [-SystemDSN <string>] 

  [-TableorView <string>] 

  [-DataSourceUserName <string>] 

  [-DataSourcePassword <string>] 

  [-FilePath <string>] 

  [-Server <string>] 

  [-Port <int>] 

  [-LDAPSearchContainer <string>] 

  [-DataSourceName <string>] 

  [-DataSourceConnection <string>] 

  [-DataSourceQuery <string>] 

  [-KeyMapDB <string>] 

  [-KeyMapAD <string>] 

  [-WindowsAthentication] 

  [-IsPasswordExpiryGroup] 

  [-DomainExpiration <int>] 

  [-ExpirationRange <int>] 

  [-IncludeDisabledUsers <string>] 

  [-IncludePasswordNeverExpireUsers <string>] 

  [-Script <string>] 

  [-ScriptFilePath <string>] 

  [-Sun_Container <string>] 

  [-GroupAlias <string>] 

  [-ManagedBy <string[]>] 

  [-DisplayName <string>] 

  [-MailEnabled <string>] 

  [-Description <string>] 

  [-AdditionalOwners <string[]>] 

  [-NotifyOptOutAdditionalOwners <string[]>] 

  [-Members <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 



Chapter 10 - Dynasty Commands 

96 © 2022 Imanami | Now Part of Netwrix 
 

Required parameters 

• TopManager 

• SamAccountName  

• Name  

• OrganizationalUnit 

• GroupScope  

• Type 

• SecurityType 

Example 1 

The following command creates a new mail-enabled, universal, distribution Dynasty 
and constructs its child groups for every distinct department value in the container 
specified by the OrganizationalUnit parameter using the credentials of current user 
logged-on to the identity store. 

New-Dynasty -OrganizationalUnit 

"OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Name "Departmental" 

-SamAccountName  "Departmental" -Type "Distribution" -

GroupScope "Universal Group" -MailEnable True -GroupAlias 

"Departmental" -GroupBy  "Department" 

Example 2 

The following command creates a new mail-enabled, universal, distribution, multi-
level Dynasty with the group-by attributes Country, State and City based on the 
specified filters and separator, using the credentials set in the $Credentials 
environment variable. For information about setting credentials, see Appendix A. 

New-Dynasty -OrganizationalUnit 

"OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Name "Geographical" 

-GroupAlias "Geographical" -MailEnable True -SamAccountName 

"Geographical" -GroupScope "Universal Group" -Type 

"Distribution" -GroupBy "co","st","l" -Filters "Left 

3","Left 3","%GROUPBY%\*" -Separator "_","_","_" -

Credential $Cred 

Example 3 

The following command creates a new universal, distribution Managerial Dynasty in 
the container specified by the OrganizationalUnit parameter, searches the direct 
reports of the top manager in the containers specified in the SearchContainers 
parameter including sub containers and creates them in the same container where 
the Top Manager resides. 



Chapter 10 - Dynasty Commands 

97 © 2022 Imanami | Now Part of Netwrix 
 

New-Dynasty -OrganizationalUnit 

"OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Name "Managerial" -

SamAccountName "Managerial" -GroupScope "Universal Group" -

Type "Distribution" -SearchContainers 

"OU=Recruiting,OU=HR,DC=Imanami,DC=US","OU=Outsourcing,OU=H

R,DC=Imanami,DC=US" -SearchContainersScopeList "2","2" -

TopManager "CN=BrianRegan,CN=Users,DC=HR,DC=Imanami,DC=US" 

-ExcludeNestedLists False -ChildContainer "" 

Set-Dynasty 

The Set-Dynasty commandlet lets you to modify a Dynasty or its children in 
Directory.  

GroupID maintains a history for this commandlet, which you can view in GroupID 
Management Console using the History tab of the object's properties dialog box. 

Syntax 
Set-Dynasty  

  -Identity <string> 

  [-GroupBy <string[]>] 

  [-AliasTemplate <string>] 

  [-DisplayNameTemplate <string>] 

  [-InheritanceBehaviour  

   {InheritSelectedAttributeOnCreation |  

    AlwaysInheritSelectedAttributes |  

    NeverInheritSelectedAttributes}] 

  [-TopManager <string>] 

  [-ChildContainer <string[]>] 

  [-ExcludeNestedLists <string>] 

  [-CreateFlatManagerialList <string>] 

  [-IncludeManagerAsMember <string>] 

  [-Filters <string[]>] 

  [-Separator <string[]>] 

  [-SearchContainers <string[]>] 

  [-SearchContainersScopeList <string[]>] 

  [-ObjectTypes <string[]>] 

  [-LdapFilter <string>] 

  [-IncludeRecipients <string[]>] 

  [-ExcludeRecipients <string[]>] 

  [-Storage <string>] 

  [-DataSourceType <string>] 

  [-SystemDSN <string>] 

  [-TableOrView <string>] 

  [-DataSourceUserName <string>] 

  [-DataSourcePassword <string>] 

  [-FilePath <string>] 

  [-Server <string>] 



Chapter 10 - Dynasty Commands 

98 © 2022 Imanami | Now Part of Netwrix 
 

  [-Port <int>] 

  [-LDAPSearchContainer <string>] 

  [-DataSourceName <string>] 

  [-DataSourceQuery <string>] 

  [-WindowsAuthentication] 

  [-EnableUpdate <string>] 

  [-IsPasswordExpirySmartDL] 

  [-ExpirationRange <int>] 

  [-DomainExpiration <int>] 

  [-MaximumPasswordAge <int>] 

  [-MinimumPasswordAge <int>] 

  [-IncludeDisabledUsers <string>] 

  [-IncludePasswordNeverExpireUsers <string>] 

  [-SendEmail <string>]  

  [-EmailTemplatePath <string>] 

  [-Script <string>] 

  [-ScriptFilePath <string>] 

  [-Provider_Container <string>] 

  [-PowerTools <ArrayList>] 

  [-KeyMapAD <string>] 

  [-KeyMapDB <string>] 

  [-ExtendGroupLife] 

  [-ExpirationPolicy <int>] 

  [-MsExchCoManagedByLink <string[]>] 

  [-IsExpired <string>] 

  [-GroupScope <string>] 

  [-Type <string>] 

  [-Prefix <string>] 

  [-SecurityType <string>] 

  [-ManagedBy <string[]>] 

  [-MaxSendSize <int>] 

  [-AcceptMessagesOnlyFrom <string[]>] 

  [-RejectMessagesFrom <string[]>] 

  [-AcceptMessagesOnlyFromGroups <string[]>] 

  [-RejectMessagesFromGroup <string[]>]  

  [-AdditionalOwners <string[]>] 

  [-NotifyOptOutAdditionalOwners <string[]>] 

  [-ExpansionServer <string>] 

  [-BypassOwnersPolicy <string>] 

  [-MsExchRequireAuthToSendTo <string>]  

  [-HiddenFromAddressListEnabled <string>] 

  [-SendOofMessageToOriginatorEnabled <string>]  

  [-HideMembershipFromAddressListEnabled <string>] 

  [-ReportToManagerEnabled <string>] 

  [-ReportToOriginatorEnabled <string>] 

  [-UpdateMembershipByManagerEnabled <string>] 

  [-Add <hashtable[]>] 

  [-Remove <hashtable[]>] 

  [-Replace <hashtable[]>] 

  [-Clear <string[]>] 

  [-Department <string>] 

  [-Company <string>] 



Chapter 10 - Dynasty Commands 

99 © 2022 Imanami | Now Part of Netwrix 
 

  [-Assistant <string>] 

  [-HomePage <string>] 

  [-Alias <string>] 

  [-EmailAddress <string>] 

  [-Description <string>] 

  [-Notes <string>]  

  [-AdministrativeNotes <string>] 

  [-DisplayName <string>] 

  [-SimpleDisplayName <string>] 

  [-CustomAttribute1 <string>] 

  [-CustomAttribute2 <string>] 

  [-CustomAttribute3 <string>] 

  [-CustomAttribute4 <string>] 

  [-CustomAttribute5 <string>] 

  [-CustomAttribute6 <string>] 

  [-CustomAttribute7 <string>] 

  [-CustomAttribute8 <string>] 

  [-CustomAttribute9 <string>] 

  [-CustomAttribute10 <string>] 

  [-CustomAttribute11 <string>] 

  [-CustomAttribute12 <string>] 

  [-CustomAttribute13 <string>] 

  [-CustomAttribute14 <string>] 

  [-CustomAttribute15 <string>] 

  [-Delimiter <string>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example 1 

The following command modifies the Departmental Dynasty by changing the 
Group-by attributes list using the credentials of current user logged-on to the 
identity store. 

Set-Dynasty -Identity 

"CN=DepartmentalOU=Recruiting,DC=HR,DC=Imanami,DC=US" -

GroupBy "Department","Company","Title" 

Example 2 

The command below modifies the Top Manager of a Managerial Dynasty, changes 
the alias name and display name templates for the Dynasty children, sets the scope 
to search Dynasty children in the containers specified in the Add parameter 
excluding sub-containers using the credentials set in the $Credentials environment 
variable. For information about setting credentials, see Appendix A. 



Chapter 10 - Dynasty Commands 

100 © 2022 Imanami | Now Part of Netwrix 
 

Set-Dynasty -Identity 

"CN=Managerial,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

TopManager 

"CN=Administrator,CN=Users,DC=HR,DC=Imanami,DC=US" -Add @{ 

SearchContainers="OU=Recruiting,OU=HR,DC=Imanami,DC=US#1","

OU=Outsourcing,OU=HR,DC=Imanami,DC=US#1"}-

ExcludeNestedLists False -ChildContainer "" -AliasTemplate 

"%Manager% -DirectReports" -DisplayNameTemplate "Direct 

reports of %Manager%" -Credential $Cred 

Example 3 

The following command modifies the search criteria for the Managerial Dynasty to 
retrieve all mail-enabled objects who are the member of the Training group. 

Set-Dynasty -Identity 

"CN=Managerial,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

ObjectTypes 

"ExchangeUsers","ExternalUsers","ExternalContacts","EmailGr

oups" -LdapFilter "(MemberOf=Training)" 

Example 4 

The following command adds three group-by levels to an Organizational Dynasty. 

Set-Dynasty -Identity 

"CN=Organizational,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

Add 

@{GroupBy="Company#OU=Recruiting,DC=HR,DC=Imanami,DC=US#Lef

t 3#-

","Department#OU=Recruiting,DC=HR,DC=Imanami,DC=US#Right 

5#-","OU=Recruiting,DC=HR,DC=Imanami,DC=US#With 

%GROUPBY%\*#^"} 

Example 5 

The following command modifies additional owners, Includes and Excludes lists 
and replaces Search Scope of a Managerial Dynasty. 

Set- Dynasty -Identity 

"CN=Managerial,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Add 

@{AdditionalOwners="CN=Roger 

Manson,OU=Recruiting,OU=HR,DC=Imanami,DC=US","Robin Soto"; 

Includes="USWing","PKWing"; Excludes="UAEWing"} -Replace 

@{SearchContainers="OU=Recruiting,OU=HR,DC=Imanami,DC=US#1"

,"OU=Outsourcing,OU=HR,DC=Imanami,DC=US#1"} 



Chapter 10 - Dynasty Commands 

101 © 2022 Imanami | Now Part of Netwrix 
 

Example 6 

The following command clears the groups specified in the Includes list of a 
Managerial Dynasty. 

Set-Dynasty -Identity 

"CN=Managerial,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Clear 

"Includes" 

 



 

102 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 11 - Mailbox Commands 
This chapter covers commandlets for performing mailbox related tasks such as: 

• Get-Mailbox: retrieves a mailbox. 

• New-Mailbox: creates a new mailbox. 

• Remove-Mailbox: deletes a mailbox. 

• Set-Mailbox: modifies a mailbox. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of ParametersError! R

eference source not found. table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Get-Mailbox 

Use the Get-Mailbox commandlet to retrieve basic information about a mailbox that 
match your given criteria. 

Syntax 
Get-MailBox  

  [[-Identity] <string[]>] 

  [-SearchContainer <string[]>] 

  [-SearchContainersScopeList <string>] 

  [-MailBoxStore <string>] 

  [-ShouldReturnCollection] 

  [-MaxItemsToDisplay <int>] 

  [-ObjectType <string[]>] 

  [-LdapFilter <string>]  

  [-SmartFilter <string>] 

  [-ServerFilter <string>] 

  [-AttributesToLoad <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 



Chapter 11 - Mailbox Commands 

103 © 2022 Imanami | Now Part of Netwrix 
 

Required parameter 

• None 

Example  

The following command retrieves the specified mailbox from the connected 
identity store. 

Get-MailBox -Identity "OsamaMailBox" 

New-Mailbox 

Use the New-Mailbox commandlet to create a new mailbox in Directory. Most 
mailbox properties can be directly added by using the parameters of this 
commandlet. 

Syntax 
New-MailBox  

  -MailBoxStore <string>  

  -Alias <string>  

  -Name <string>  

  -OrganizationalUnit <string>  

  -SAMAccountName <string>  

  -Password <string>  

  -FirstName <string>  

  -LastName <string>  

  -DisplayName <string>  

  [-UPNSuffix <string>] 

  [-Title <string>]  

  [-City <string>]  

  [-State <string>]  

  [-Zip <string>] 

  [-Country <string>] 

  [-Initials <string>] 

  [-Address <string>] 

  [-Office <string>] 

  [-Business <string>] 

  [-Business2 <string>] 

  [-EmailAddress <string>] 

  [-Department <string>] 

  [-Company <string>] 

  [-Mobile <string>]  

  [-Home <string>] 

  [-AccountDisabled <string>] 

  [-PasswordNeverExpires <string>] 

  [-PasswordForceChange <string>] 

  [-Manager <string[]>] 



Chapter 11 - Mailbox Commands 

104 © 2022 Imanami | Now Part of Netwrix 
 

  [-HomePage <string>] 

  [-Assistant <string>] 

  [-Notes <string>] 

  [-MailEnabled <string>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameters 

• MailBoxStore 

• Alias  

• Name  

• OrganizationalUnit  

• SAMAccountName  

• Password  

• FirstName 

• LastName  

• DisplayName 

Example  

The following command creates a new mailbox in the container specified by the 
OrganizationalUnit parameter of specified mailbox store. The command also 
specifies the logon name, password, first name, last name and display name of the 
new mailbox. 

New-MailBox -MailBoxStore "OsamaMailBoxDb120435" -Name 

"OsamaMailBox" -OrganizationalUnit 

"OU=osamamu,DC=naveed,DC=local" -SAMAccountName 

"OsamaMailBoxUser" -Password "webdir123R" -FirstName 

"OsamaMailBox" -LastName "MailBoxuser" -DisplayName 

"OsamaMailBox" -Alias "OsamaMailBox 

Remove-Mailbox 

Use the Remove-Mailbox commandlet to delete mailbox from the connected 
identifty store. 



Chapter 11 - Mailbox Commands 

105 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Remove-MailBox 

  -Identity <string[]>  

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example  

The following command deletes the specified mailbox from the connected identity 
store. 

Remove-MailBox -Identity "OsamaMailBox" 

Set-Mailbox 

The Set-Mailbox commandlet modifies a mailbox in Directory. Most mailbox 
properties can be directly modified by using the parameters of this commandlet. 

Syntax 
Set-MailBox  

  -Identity <string>  

  [-FirstName <string>] 

  [-LastName <string>] 

  [-Title <string>] 

  [-City <string>] 

  [-State <string>] 

  [-Zip <string>] 

  [-Country <string>] 

  [-Initials <string>] 

  [-Address <string>] 

  [-Office <string>] 

  [-Business <string>] 

  [-Add <hashtable[]>] 

  [-Remove <hashtable[]>] 

  [-Replace <hashtable[]>] 

  [-Clear <string[]>] 

  [-Department <string>] 

  [-Company <string>] 

  [-Assistant <string>] 

  [-HomePage <string>] 

  [-Alias <string>] 

  [-EmailAddress <string>] 



Chapter 11 - Mailbox Commands 

106 © 2022 Imanami | Now Part of Netwrix 
 

  [-Description <string>] 

  [-Notes <string>] 

  [-AdministrativeNotes <string>] 

  [-DisplayName <string>] 

  [-SimpleDisplayName <string>] 

  [-CustomAttribute1 <string>] 

  [-CustomAttribute2 <string>] 

  [-CustomAttribute3 <string>]  

  [-CustomAttribute4 <string>]  

  [-CustomAttribute5 <string>]  

  [-CustomAttribute6   <string>]  

  [-CustomAttribute7 <string>]  

  [-CustomAttribute8 <string>]  

  [-CustomAttribute9 <string>] 

  [-CustomAttribute10 <string>]  

  [-CustomAttribute11 <string>]  

  [-CustomAttribute12 <string>]   

  [-CustomAttribute13 <string>]  

  [-CustomAttribute14 <string>]  

  [-CustomAttribute15 <string>]  

  [-Delimiter <string>] 

  [-IdentityStoreId <int>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <pscredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity 

Example  

The following commandlet modifies the country value of the specified mailbox in 
the connected identity store. 

Set-MailBox -Identity "OsamaMailBox" -Country "Pakistan" 

 



 

107 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 12 - Mail-Enabled/Disabled Groups 
Commands 

This chapter covers commandlets for enabling and disabling groups for email. 

• Disable-DistributionGroup: disabled a group's email capability for a group. 

• Enable-DistributionGroup: enable a group's email capability for a group.  

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of ParametersError! R

eference source not found. table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Disable-DistributionGroup 

Use this commandlet to disable the mailing capabilities for a distribution group in 
Directory. 

GroupID maintains a history for this commandlet, which you can view in GroupID 
Management Console using the History tab of the object's properties dialog box. 

Syntax 
Disable-DistributionGroup 

  -Identity <string> 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example  

The following command mail-disables a distribution group specified by the Identity 
parameter, using the credentials of current user logged-on to the identity store. 



Chapter 12 - Mail-Enabled/Disabled Groups Commands 

108 © 2022 Imanami | Now Part of Netwrix 
 

Disable-DistributionGroup -Identity 

"CN=Smart_Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" 

Enable-DistributionGroup 

This commandlet helps you to mail-enable a distribution group in Directory.  

GroupID maintains a history for this commandlet, which you can view in GroupID 
Management Console using the History tab of the object's properties dialog box. 

Syntax 
Enable-DistributionGroup 

  -Identity <string> 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• Identity 

Example  

The following command mail-enables a distribution group specified by the Identity 
parameter, using the credentials of current user logged-on to the identity store. 

Enable-DistributionGroup -Identity 

"CN=Smart_Training,OU=Recruiting,DC=HR,DC=Imanami,DC=US" 

 



 

109 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 13 - Memberships Commands 
This chapter covers commandlets for managing the memberships of both managed 
and unmanaged groups.  

• Add-GroupMember: adds objects to the membership of a group. 

• Get-GroupMember: retrieves members of a particular group. 

• Get-Object: retrieves objects. 

• Remove-GroupMemeber: removes recipients from a group membership. 

• Set-Object: modifies any object. 

Review the description of the supported parameters of these 
commandlets along with their attributes in the List of ParametersError! R

eference source not found. table. 

Common parameters of Windows Management Shell are not supported 
in GroupID Management Shell. 

Add-GroupMember 

The Add-GroupMember commandlet helps you to add one or more objects to the 
membership of a group in Directory. Two types of membership can exist in the 
GroupID.  

• Perpetual membership 

• Temporary membership 

Modifying the membership of a Smart Group or Dynasty using this commandlet is 
not recommended, since your changes will be discarded the next time the group is 
updated. 

GroupID maintains a history for this commandlet, which you can view in GroupID 
Management Console using the History tab of the object's properties dialog box. 



Chapter 13 - Memberships Commands 

110 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Add-GroupMember  

  -GroupIdentity <string>  

  -Identity <string>  

  [-Type <string>]  

  [-StartDate <datetime>] 

  [-EndDate <datetime>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameters 

• GroupIdentity  

• Identity 

Example 1 

The following command adds the user Brian Regan to the membership of the Event 
Management group using the credentials set in the $Credentials environment 
variable. For information about setting credentials, see Appendix A. 

Add-GroupMember -GroupIdentity "CN=Event 

Management,OU=Local 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Identity 

"CN=BrianRegan,CN=User,DC=HR,DC=Imanami,DC=US" -Credential 

$Cred 

Example 2 

The following command gets all users from the Local Recruiting container and adds 
them to the membership of the Event Management group. For detailed information 
about the Get-Object commandlet, see Get-Object. The OUT-NULL commandlet is 
used here to restrict the retrieved users information from appearing on the console. 

Get-Object -SearchContainer "OU=Local 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

ObjectType "User" | Add-GroupMember -GroupIdentity 

"CN=Event Management,OU=Local 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" 



Chapter 13 - Memberships Commands 

111 © 2022 Imanami | Now Part of Netwrix 
 

Get-GroupMember 

Use this commandlet to retrieve members of a particular group from directory. You 
can apply filters to the results returned by the commandlet.  

Syntax 
Get-GroupMember  

  [-Identity] <string>  

  [[-LdapFilter] <string>]  

  [-AttributesToLoad <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The following command retrieves all members of the Password_Expiry group using 
the credentials set in the $Credentials environment variable. For information about 
setting credentials, see Appendix A. 

Get-GroupMember -Identity 

"CN=Password_Expiry,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

Credential $Cred 

Example 2 

The command below retrieves all members from the Enrollment group whose 
display name starts with the character S using the credentials of current user 
logged-on to the identity store. 

Get-GroupMember -Identity "CN=Enrollment,OU=Local 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

LdapFilter "(displayname=S*)" 

Get-Object 

Use this commandlet to retrieve objects from one or more containers in a domain 
that match the given criteria. 



Chapter 13 - Memberships Commands 

112 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-Object  

  [[-Identity] <string[]>]  

  [-ShouldReturnCollection]  

  [-MaxItemsToDisplay <int>] 

  [-ObjectType <string[]>] 

  [-SearchContainer <string[]>] 

  [-SearchContainersScopeList <string>] 

  [-LdapFilter <string>] 

  [-SmartFilter <string>] 

  [-ServerFilter <string>] 

  [-AttributesToLoad <string[]>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

The following command retrieves all objects from the domain you are connected to. 

Get-Object 

Example 2 

The command below retrieves the object Event Management starting from the 
container Recruiting excluding its sub-containers using the credentials set in the 
$Credentials environment variable. For information about setting credentials, see 
Appendix A. 

Get-Object -Identity "HR.Imanami.US\Event Management" -

SearchContainer "OU=Recruiting,DC=HR,DC=Imanami,DC=US" -

SearchContainersScopeList "1" -Credential $Cred 

Example 3 

The following command searches all objects in the specified containers including 
sub-containers with display names starting with the letter S . 

Get-Object -SearchContainer 

"OU=Recruiting,DC=HR,DC=Imanami,DC=US","OU=OutSourcing,DC=H

R,DC=Imanami,DC=US" -LdapFilter "(DisplayName = S*)" 



Chapter 13 - Memberships Commands 

113 © 2022 Imanami | Now Part of Netwrix 
 

Remove-GroupMember 

Use this commandlet to remove one or more recipients from a group membership.  

GroupID maintains a history for this commandlet, which you can view in GroupID 
Management Console using the History tab of the object's properties dialog box. 

Syntax 
Remove-GroupMember  

  -GroupIdentity <string>  

  -Identity <string>  

  [-Type <string>]  

  [-StartDate <datetime>] 

  [-EndDate <datetime>] 

  [-IdentityStoreId <int>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-Credential <pscredential>] 

  [<CommonParameters>] 

Required parameters 

• GroupIdentity  

• Identity  

Example 

The following command removes the user Brian Regan from the membership of the 
group Event Management using the credentials set in the $Credentials environment 
variable. For information about setting credentials, see Appendix A. 

Remove-GroupMember -GroupIdentity "CN=Event 

Management,OU=Local 

Recruiting,OU=Recruiting,DC=HR,DC=Imanami,DC=US" -Identity 

"Brian Regan" -Credential $Cred 

Set-Object 

The Set-Object commandlet modifies any object such as a user, contact, group 
(managed or unmanaged), or mailbox in Directory. 

Syntax 
Set-Object  

  -Identity <String>  

  [-Department <String>]  



Chapter 13 - Memberships Commands 

114 © 2022 Imanami | Now Part of Netwrix 
 

  [-Company <String>]  

  [-Assistant <String>]  

  [-HomePage <String>]  

  [-Alias <String>]  

  [-EmailAddress <String>]  

  [-Description <String>]  

  [-Notes <String>]  

  [-AdministrativeNotes <String>]  

  [-DisplayName <String>]  

  [-SimpleDisplayName <String>]  

  [-CustomAttribute1 <String>]  

  [-CustomAttribute2 <String>]  

  [-CustomAttribute3 <String>]  

  [-CustomAttribute4 <String>]  

  [-CustomAttribute5 <String>]  

  [-CustomAttribute6 <String>]  

  [-CustomAttribute7 <String>]  

  [-CustomAttribute8 <String>] 

  [-CustomAttribute9 <String>]  

  [-CustomAttribute10 <String>]  

  [-CustomAttribute11 <String>]  

  [-CustomAttribute12 <String>]  

  [-CustomAttribute13 <String>]  

  [-CustomAttribute14 <String>]  

  [-CustomAttribute15 <String>]  

  [-Delimiter <String>]  

  [-IdentityStoreId <Int32>]  

  [-SecurityToken <CustomClaimsPrincipal>]  

  [-Credential <PSCredential>]  

  [<CommonParameters>] 

Required parameter 

• Identity  

Example 1 

The following example modifies description of a user specified against the Identity 
parameter. 

Set-object -identity "Sonia Iqbal" -Description TestUser 

 



 

115 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 14 - Scheduling Commands 
This section contains the references to the commandlets dealing with the 
scheduling operations. These commandlets comprise the following set: 

• Get-Schedule: retrieves scheduled jobs. 

• Get-TargetSchedules: retrieves the scheduled jobs operating on the 
specified groups or OU. 

• Invoke-Schedule: executes the specified scheduled job.  

• New-Schedule: creates a new schedule. 

• Remove-Schedule: removes a schedule from an identity store. 

• Set-Schedule: modifies a schedule. 

• Stop-Schedule: stops a specified schedule, if running. 

Get-Schedule 

The commandlet Get-Schedule retrieves the scheduled jobs created in the identity 
store connected to the current instance of the Management Shell. By default, this 
cmdlet returns all the jobs available irrespective of the following: 

• whether the identity store with which they belong is enabled. 

• whether the jobs are enabled. 

This commandlet can also filter the job list if provided with the filtration 
parameters such as JobType, TriggerType or HavingNotifications. It also accepts a 
MatchingCriteria parameter that determines whether the criteria are to be joined on 
the AND basis or OR basis. 



Chapter 14 - Scheduling Commands 

116 © 2022 Imanami | Now Part of Netwrix 
 

Syntax 
Get-Schedule [-ScheduleNames <String[]>] 

  [-IdentityStoreNames <String[]>] 

  [-JobTypes <JobType[]>] 

  [-TriggerTypes <TriggerType[]>] 

  [-HavingNotifications <Boolean>] 

  [-MatchingCriteria <JoiningOperator>] 

  [-PreventEnumeration]  

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

This example retrieves all the scheduled jobs created in the connected identity 
store. 

Get-Schedule 

Example 2 

This example retrieves those Group Usage Service – GUS job(s) that have monthly 
trigger and MatchingCriteria on the And basis. 

Get-Schedule -JobType GUS -TriggerType RunMonthly -

MatchingCriteria And 

Example 3 

This example retrieves the scheduled job with GUS1 name. 

Get-Schedule -ScheduleName GUS1 

Example 4 

This example retrieves the two scheduled jobs – GUS1 and GLM6 –through the 
pipeline operator. 

'GUS1','GLM6' | Get-Schedule 



Chapter 14 - Scheduling Commands 

117 © 2022 Imanami | Now Part of Netwrix 
 

Get-TargetSchedules 

The commandlet Get-TargetSchedules retrieves the scheduled jobs operating on 
the given target (group/OU). 

Syntax 
Get-TargetSchedules 

  [-DistinguishedName] <String> 

  [-Enumerate] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

Required parameter 

• DistinguishedName 

Example 1 

This example retrieves the schedules operating on an OU with distinguished name 
OU=WorkingOU,DC=pucit,DC=local. 

Get-TargetSchedules -DistinguishedName 

‘OU=WorkingOU,DC=pucit,DC=local’ 

Example 2 

This example retrieves the schedules operating on a group and an OU through the 
pipeline operator. 

'OU=WorkingOU,DC=pucit,DC=local', 

'CN=SGroup1,OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local

' | Get-TargetSchedules 

Example 3 

This example selects only the Names and Job Types of the schedules operating on 
the specified targets through the pipeline operator. 

'OU=WorkingOU,DC=pucit,DC=local', 

'CN=SGroup1,OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local

' | Get-TargetSchedules | Select-Object -Property 

Name,JobType 



Chapter 14 - Scheduling Commands 

118 © 2022 Imanami | Now Part of Netwrix 
 

Invoke-Schedule 

The commandlet Invoke-Schedule executes the specified schedules job. 

Syntax 
Invoke-Schedule 

  [-ScheduleName <String>] 

  [-JobId <Int32>] 

  [-PassThru] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

Required parameter 

• None 

Example 1 

This example executes a schedule with name starting smm4_. 

Invoke-Schedule -ScheduleName smm4_ 

Example 2 

This example executes a schedule with GUS as Job Type. 

Get-Schedule -JobType GUS | Select-Object -Property Name | 

Invoke-Schedule 

Example 3 

This example executes all the GUS scheduled jobs with daily running trigger. 

Get-Schedule -JobType GUS -TriggerType RunDaily -

MatchingCriteria And | Select-Object -Property Name | 

Invoke-Schedule 



Chapter 14 - Scheduling Commands 

119 © 2022 Imanami | Now Part of Netwrix 
 

New-Schedule 

The commandlet New-Schedule creates a new schedule in the identity store 
connected to the current instance of Management Shell. 

Syntax 
New-Schedule 

  -ScheduleName <String> 

  -Targets <String[]> 

  -TargetType <SchedulingTargetType> 

  -IdentityStoreName <String> 

  -Credentials <PSCredential> 

  -JobType <JobType> 

  -TriggerType <TriggerType> 

  -StartTime <DateTime> 

  [-WeekDays <DaysOfTheWeek>] 

  [-YearMonths <MonthsOfTheYear>] 

  [-MonthDate <Int32>] 

  [-EnableNotifications] 

  [-Recepients <String[]>] 

  [-SendToOwners] 

  [-NotificationSendingCriteria 

<NotificationSendingCriteria>] 

  [-PassThru] [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

Required parameters 

• ScheduleName 

• Targets 

• TargetType 

• IdentityStoreName 

• Credentials 

• JobType 

• TriggerType 

• StartTime 



Chapter 14 - Scheduling Commands 

120 © 2022 Imanami | Now Part of Netwrix 
 

Example 1 

This example creates a new schedule using minimum possible parameters. This 
example contains insecure password. 

New-Schedule -ScheduleName SmuTest1 -IdentityStoreName 

AdStore8 -UserName user -Password password1 -Targets 

'OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local', 

'OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local' -JobType 

SmartGroup -TriggerType Daily -StartTime '16:56' 

This example uses insecure credentials. 
 

Example 2 

This example creates a smart-group schedule triggering every 7th of every March, 
August and September.  

New-Schedule -ScheduleName SmuTest2 -IdentityStoreName 

AdStore8 -Credentials $creds -Targets 

'OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local' -JobType 

SmartGroup -TriggerType Monthly -StartTime '16:56' -

YearMonths 'March','August','September' -MonthDate 7 

To use secure credentials, first create them and save them to a variable named 
‘creds’. 

$creds = Get-Credential 

Example 3 

This example creates a GUS job by providing a messaging system.  

New-Schedule -ScheduleName GusTest1 -Targets 

'OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local' -JobType 

GUS -Credentials $creds -TriggerType Daily -StartTime 

'16:56' -MessagingSystems 'ARSLANAHMADSVM.PUCIT.LOCAL' 

Example 4 

This example creates a GUS job specifying that it should include all containers and 
messaging systems.  

New-Schedule -ScheduleName GusTest2 -IncludeAllContainers -

IncludeAllMessagingSystems -JobType GUS -Credentials $creds 

-TriggerType Daily -StartTime '16:56' 

Example 5 

This example creates a job by configuring the notification settings. This 
commandlet specifies that the notifications for this schedule are enabled and sent 
to the specified recipients as well as to the owners of the schedule targets. The 
notifications are only sent when the schedule completes its job successfully. 



Chapter 14 - Scheduling Commands 

121 © 2022 Imanami | Now Part of Netwrix 
 

New-Schedule -ScheduleName GusTest3 -IncludeAllContainers -

IncludeAllMessagingSystems -JobType GUS -Credentials $creds 

-TriggerType Daily -StartTime '16:56' -EnableNotifications 

-Recepients 'recep1@gid.com','recep2@gid.com' -SendToOwners 

-NotificationSendingCriteria OnSuccess 

Remove-Schedule 

The commandlet Remove-Schedule removes a schedule (by its name or ID) from the 
identity store connected to the current instance of the Management Shell. 

Syntax 
Remove-Schedule 

  -ScheduleName <String> 

  [-PassThru] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

 

Remove-Schedule 

  -ScheduleId <Int32> 

  [-PassThru] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 

Required parameters 

• ScheduleName or Scheduled 

Example 1 

This example removes a schedule named GUS811_1. 

Remove-Schedule -ScheduleName GUS811_1 



Chapter 14 - Scheduling Commands 

122 © 2022 Imanami | Now Part of Netwrix 
 

Example 2 

This example removes two schedules – GUS1 and GUS2 using the pipeline 
operator. 

'GUS_1', 'GUS_2' | Remove-Schedule 

Example 3 

This example removes all schedules with job type Glm.  

Get-Schedule -JobType Glm | Select-Object -Property Name | 

Remove-Schedule 

Set-Schedule 

The commandlet Set-Schedule modifies the attributes and settings of a schedule in 
the identity store connected to the current instance of the Management Shell. 

Syntax 
Set-Schedule  

  -ScheduleName <string> 

  [-NewName <string>] 

  [-TargetOperation {Add | Remove}] [-Targets <string[]>] 

  [-Credential <pscredential>] 

  [-UserName <string>] 

  [-Password <string>] 

  [-SetNotifications <bool>] 

  [-Recepients <string[]>] 

  [-SendToOwners <bool>] 

  [-NotificationSendingCriteria {Always | OnSuccess | 

OnFailure | OnMembershipChanged}] 

  [-Enabled <bool>] 

  [-TriggerOperation {add | remove single by id | remove by 

type | remove all}] 

  [-TriggerId <int>] 

  [-TriggerType {Event | Time | Daily | Weekly | Monthly | 

MonthlyDOW | Idle | Registration | Boot | Logon | 

SessionStateChange | Custom}] 

  [-StartTime <datetime>] 

  [-MonthDate <int>] 

  [-YearMonths {January | February | March | April | May | 

June | July | August | September | October | November | 

December | AllMonths}] 

  [-MonthWeek {FirstWeek | SecondWeek | ThirdWeek | 

FourthWeek | LastWeek | AllWeeks}] 

  [-WeekDays {Sunday | Monday | Tuesday | Wednesday | 

Thursday | Friday | Saturday | AllDays}] 

  [-DaysInterval <int>] 



Chapter 14 - Scheduling Commands 

123 © 2022 Imanami | Now Part of Netwrix 
 

  [-WeeksInterval <int>] 

  [-Repeat] 

  [-RepeatInterval <int>] 

  [-RepeatDuration <int>] 

  [-EndDate <datetime>] 

  [-TriggerDisabled] 

  [-KillAtDurationEnd] 

  [-IncludeAllContainers] 

  [-IncludeSpecifiedContainers] 

  [-MessagingSystems <string[]>]   

  [-IncludeAllMessagingServers] 

  [-IncludeSpecifiedMessagingServers] 

  [<CommonParameters>] 

Required parameters 

• ScheduleName  

Example 1 

This example renames a schedule from GUS1 to GUS1-renamed. 

Set-Schedule -ScheduleName GUS1 -NewName GUS1_renamed 

Example 2 

This example updates the authentication information of GUS1 schedule. 

Set-Schedule -SscheduleName GUS1 -Credential $creds 

Example 3 

This example removes OU targets from smm4 schedule. 

Set-Schedule -ScheduleName smm4_ -TargetOperation Remove -

Targets 'OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=local', 

'OU=CustomRole,OU=WorkingOU,DC=pucit,DC=local', 

'OU=CustomRole2,OU=WorkingOU,DC=pucit,DC=local' 

Example 4 

This example modifies smm4_ schedule by removing its targets. 

Set-Schedule -ScheduleName smm4_ -TargetOperation Remove -

Targets 

'CN=STest1Group,OU=ArslanAhmadOU,OU=WorkingOU,DC=pucit,DC=l

ocal', 'OU=CustomRole2,OU=WorkingOU,DC=pucit,DC=local' 

Example 5 

This example clears configured notification settings of a schedule smm4. 

Set-Schedule -ScheduleName smm4_ -SetNotifications $false 



Chapter 14 - Scheduling Commands 

124 © 2022 Imanami | Now Part of Netwrix 
 

Example 6 

This example changes notification settings of a schedule smm4. It sets notification 
to be sent to recep1@gid.com every time the job is run. 

Set-Schedule -ScheduleName smm4_ -SetNotifications $true -

Recepients 'recep1@gid.com' -NotificationSendingCriteria 

Always 

Example 7 

This example adds a monthly trigger for smm4 schedule. It is repeated every 10 
minutes for 1 hour on 23rd of March, August and September at 16:56. 

Set-Schedule -ScheduleName smm4_ -TriggerOperation Add -

TriggerType Monthly -StartTime '16:56' -MonthDate 23 -

YearMonths 'March,August,September' -Repeat -RepeatInterval 

10 -RepeatDuration 60 

Example 8 

This example adds a monthly repeating trigger for smm4_ schedule and has an end 
date. It stops if it runs at the duration end. 

Set-Schedule -ScheduleName smm4_ -TriggerOperation Add -

TriggerType Monthly -StartTime '16:56' -MonthDate 23 -

YearMonths 'March,August,September' -Repeat -RepeatInterval 

10 -RepeatDuration 60 -EndDate '2020/03/29' –

KillAtDurationEnd 

Stop-Schedule 

The commandlet Stop-Schedule stops a specified schedule if it is already running. 

Syntax 
Stop-Schedule 

  [-ScheduleName <String>] 

  [-JobId <Int32>] 

  [-PassThru] 

  [-IdentityStoreId <Int32>] 

  [-SecurityToken <CustomClaimsPrincipal>] 

  [-WarningAction <ActionPreference>] 

  [-InformationAction <ActionPreference>] 

  [-WarningVariable <String>] 

  [-InformationVariable <String>] 

  [-PipelineVariable <String>] 

  [<CommonParameters>] 



Chapter 14 - Scheduling Commands 

125 © 2022 Imanami | Now Part of Netwrix 
 

Required parameters 

• ScheduleName  

Example 1 

This example stops a schedule smm4 by name. 

Stop-Schedule -ScheduleName smm4_ 

Example 2 

This example stops a schedule with job type as GUS. 

Stop-Schedule -JobType GUS | Select-Object -Property Name | 

Invoke-Schedule 

Example 3 

This example stops all the daily running GUS jobs. 

Get-Schedule -JobType GUS -TriggerType RunDaily -

MatchingCriteria And | Select-Object -Property Name | Stop-

Schedule 

 



 

126 © 2022 Imanami | Now Part of Netwrix 
 

Chapter 15 - GroupID Commandlets 
Parameters 

This chapter provides description of parameters of GroupID Management Shell 
Commandlets covered in this guide.  

List of Parameters 

The following table lists the GroupID Management Shell commandlet parameters in 
alphabetical order. Click on alphabet letter to easily locate the parameter which 
starts with that letter. 

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X Y Z 

Parameter Name Description  
A  
AcceptMessagesOnlyFrom The distinguished names (DN), globally unique 

identifiers (GUID) or samAccountNames of the 
mailbox users and mail-enabled contacts who can 
send e-mail messages to the group. Providing a 
blank value enables the group to accept 
messages from all mailbox users and all mail-
enabled contacts. 
(Applies to Distribution groups only). 

AcceptMessagesOnlyFromGr
oups 

The distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of one or 
more groups or users that the group is allowed to 
accept messages from. Separate multiple objects 
with commas (,). 
(Applies to Distribution groups only.)  

AccidentalDeletion If the value is set as True, user will be prompted 
before container deletion. 

Add Set-User, Set-contact, Set-Mailbox 
Add will append the values of multi-value 
attributes and replace the value of single-value 
attributes. 
Set-Group 



Chapter 15 - GroupID Commandlets Parameters 

127 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
This setting applies to the AdditionalOwners 
parameter and lets you add one or more 
additional owners for this group.  
The syntax in which the value is entered for this 
setting is:  
-Add  @{ AdditionalOwners = 
"Owner1","Owner2","Owner3"}  
-Add  @{ AcceptMessagesOnlyFrom = 
"User1","User2","User3"}  
-Add  @{ AcceptMessagesOnlyFromGroups = 
"Group1","Group2","Group3"}  
-Add  @{ RejectMessagesFrom = 
"User1","User2","User3"}  
-Add  @{ AcceptMessagesOnlyFrom = 
"Group1","Group2","Group3"}  
As the value of objects to be added, the setting 
accepts all the identities supported by the 
AdditionalOwners parameter, which is the 
distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of the user, 
contact, or security group.   
Set-SmartGroup, Convert-Group, Set-Dynasty 
This setting applies to the following multi-valued 
parameters and lets you add one or more values 
to these parameters. Parameters and the syntax 
for their values follows: 
Parameters Syntax 
SearchContainers 
(StartPaths can be used 
as an alternative name of 
this parameter for this 
setting) 

-Add @{ 
SearchContainers = 
"Container1#1","Conta
iner2#2"} 
    Or 
-Add @{ StartPaths = 
"Container1#1","Conta
iner2#2"} 
Here # specifies the 
search scope for each 
container. If scope is 
not given, then 
subtree (2) is used as 
default. 

IncludeRecipients 
(Includes can be used as 

-Add @{ 
IncludeRecipients = 



Chapter 15 - GroupID Commandlets Parameters 

128 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
an alternative name of 
this parameter for this 
setting) 

"Object1","Object2"} 
   Or 
-Add @{ Includes = 
"Object1","Object2"} 

ExcludeRecipients 
(Excludes can be used as 
an alternative name of 
this parameter for this 
setting) 

-Add @{ 
ExcludeRecipients = 
"Object3","Object4"} 
   Or 
-Add @{ Excludes = 
"Object3","Object4"} 

AdditionalOwners 

-Add @{ 
AdditionalOwners = 
"Owner1","Owner2","O
wner3"} 

Only Set-Dynasty has this 
attribute. 

GroupBy  -Add  @{GroupBy= 
"Attribute1#Container
#Filter#Separator", 
"Attribute2#Container
#Filter#Separator"} 

      
  

AcceptMessagesOnlyFro
m 
(AuthOrig can be used as 
an alternative name of 
this parameter for this 
setting) 

-Add @{ 
AcceptMessagesOnlyF
rom = 
"User1","User2","User3
"} 
   Or 
-Add @{ AuthOrig = 
"User1","User2","User3
"} 

  

AcceptMessagesOnlyFro
mGroups 
(DLMemSubmitPerms 
can be used as an 
alternative name of this 
parameter for this 
setting) 

-Add @{ 
AcceptMessagesOnlyF
romGroup = 
"Group1","Group2","Gr
oup3"} 
   Or 
-Add @{ 
DLMemSubmitPerms 
= 
"Group1","Group2","Gr
oup3"} 

  RejectMessagesFrom 
(UnauthOrig can be used 
as an alternative name of 

-Add @{ 
RejectMessagesFrom 
= 



Chapter 15 - GroupID Commandlets Parameters 

129 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
this parameter for this 
setting) 

"User1","User2","User3
"} 
   Or 
-Add @{ UnauthOrig 
= 
"User1","User2","User3
"} 

  

RejectMessagesFromGro
up 
(DLMemRejectPerms can 
be used as an alternative 
name of this parameter 
for this setting) 

-Add @{ 
RejectMessagesFromG
roup = 
"Group1","Group2","Gr
oup3"} 
   Or 
-Remove  @{ 
DLMemRejectPerms = 
"Group1","Group2","Gr
oup3"} 

  The setting accepts all the identities supported by 
the parameter as the value of objects for each 
parameter. For example, for the SearchContainer 
parameter, the setting can accept the DN and 
GUID of the domains or containers being searched 
for group members.  

AdditionalOwners The distinguished name (DN), globally unique 
identifier (GUID), or samAccountName of one or 
more users, contacts, or groups (security groups 
only) to set as the additional owners for the 
group. Passing a blank value for this parameter 
will remove additional owners. 

Address Home address of a user, contact or mailbox. 
AdministrativeNotes Any information about the group that is useful for 

its maintenance or administration. It appears on 
the Exchange Advanced tab of Group Properties 
dialog box. 

AdminUserName The admin username for the Google based 
providers and messaging systems. This parameter 
becomes available depending on the value of 
other parameters - IdentityStoreType and Provider. 

Alias Alias of user, group or mailbox.  
The alias parameter can be a combination of 
characters separated by a period without any 
spaces. Avoid using special characters in the alias. 



Chapter 15 - GroupID Commandlets Parameters 

130 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
The Exchange alias is limited to 64 characters, 
must be unique and should not contain spaces. 

AliasTemplate Specifies the pattern for creating alias names for 
Dynasty children. For a Managerial Dynasty, the 
template must contain the %MANAGER% keyword 
in the input string. This keyword is replaced with 
the respective manager. For all other Dynasties, 
the value must contain the %GROUPBY% keyword 
in the input string for replacement with the 
respective GroupBy value. 

All Perform action on all types of entities. 
AppId Used to provide Azure application ID for Azure / 

Office 365 based identity stores and messaging 
systems. Note that this parameter appears 
depending on the values of other parameters. 
Application ID which is generated by Azure AD 
when the application is registered in Azure AD. 
This parameter becomes available depending on 
the value of other parameters - IdentityStoreType 
and Provider. 

Assistant It will be a DN or (GUID) of another user or 
contact. 

AttributesToLoad Provide list of attributes which should be loaded 
with objects. In the absence of the list, object will 
be loaded with minimal attributes. 

AuthenticationMode Following are the possible values for this 
parameter: 
 1 (credentials of the logged-in users) 
 2 (works in conjunction with IdentityStoreID 

and Credentials parameters). 
 3 (user is authenticated through the Log in 

dialog box which is also the default 
mechanism if no authentication mode is 
defined by user). 

AuthenticationType Supported authentication types in GroupID which 
are: 
 Security questions 
 Email 
 SMS 
 Yubikey 
 Windows Hello 
 Authenticator 
 Link account 



Chapter 15 - GroupID Commandlets Parameters 

131 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 PhoneID 

AuthenticationTypeOperatio
n 

Enables or disables the specified authentication 
type(s). 

B  
Business First business phone number of a user, contact or 

mailbox. 
Business2 Second business phone number of a user, contact 

or mailbox. 
BypassOwnersPolicy This parameter bypasses the values set in 

GroupID configurations both for primary owner 
and required minimum additional owners at 
group creation or modification. If the value is 0 
(zero) then this parameter has no affect. 

C  
CarbonCopy Email address for carbon copy (CC) of notification 

to be sent other than the main email addresses. 
ChangeTrackerActions The list of GroupID actions to track for history 

records. The possible values are:  
 None  
 AdditionalOwnerChange  
 Enrollment 
 ExpirationPolicyChange 
 GroupExpire_Renew 
 OobChange 
 SecurityTypeChange 
 WorkflowApprovalDenial 
 OwnershipChange  
 QueryChange 
 AllOthers 
 All 
 UpgradeSmartGroupChange  
To track multiple actions, separate each action 
with a hash (#) sign and set the complete string 
as a value of this setting. For example, to track 
changes in additional owners, enrollment details 
and security types, specify the value as 
"AdditionalOwnerChange#Enrollment#SecurityTy
peChange".  

ChildContainer The distinguished name (DN) or globally unique 
identifier (GUID) of the container where you want 
to create the child groups. If you have selected 
multiple group-by attributes, you can specify a 



Chapter 15 - GroupID Commandlets Parameters 

132 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
different child container for every attribute in the 
same sequence as the group-by attributes are 
specified, separating each with a comma (,). For 
Managerial Dynasty, passing a blank value creates 
child groups in the container where the top 
manager resides. 

City The city of a user, contact or mailbox. 
Clear Set-User, Set-Contact, Set-Mailbox 

It will clear the values of multi-value and single-
value attributes. 
Set-Group 
This setting applies to the AdditionalOwners 
parameter and lets you clear the additional 
owners list.  
 The syntax for entering the value for this setting 
is:  
-Clear @{ AdditionalOwners} 
-Clear @{ AcceptMessagesOnlyFrom } 
-Clear @{ AcceptMessagesOnlyFromGroups } 
-Clear @{ RejectMessagesFrom } 
-Clear @{ AcceptMessagesOnlyFrom } 
Set-SmartGroup, Convert-Group, Set-Dynasty 
This setting works for the following multi-valued 
parameters and lets you clear all their existing 
values. Parameters and the syntax for their values 
follows: 
Parameters Syntax 
SearchContainers 
(StartPaths can be used 
as an alternative name of 
this parameter for this 
setting) 

-Clear @{ 
SearchContainers} 
   Or 
-Clear @{ StartPaths} 

IncludeRecipients 
(Includes can be used as 
an alternative name of 
this parameter for this 
setting) 

-Clear @{ 
IncludeRecipients} 
   Or 
-Clear @{ Includes} 

ExcludeRecipients 
(Excludes can be used as 
an alternative name of 
this parameter for this 
setting) 

-Clear @{ 
ExcludeRecipients} 
   Or 
-Clear @{ Excludes} 



Chapter 15 - GroupID Commandlets Parameters 

133 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
AdditionalOwners -Clear @{ 

AdditionalOwners} 
Only Set-Dynasty has this 
attribute. 

GroupBy -Clear @{ GroupBy} 

    
AcceptMessagesOnlyFro
m 
(AuthOrig can be used as 
an alternative name of 
this parameter for this 
setting) 

-Clear  @{ 
AcceptMessagesOnly 
From } 
   Or 
-Clear @{ AuthOrig } 

AcceptMessagesOnlyFro
mGroups 
(DLMemSubmitPerms 
can be used as an 
alternative name of this 
parameter for this 
setting) 

-Clear @{ 
AcceptMessagesOnly 
FromGroups } 
   Or 
-Clear @{ 
DLMemSubmitPerms } 

RejectMessagesFrom 
(UnauthOrig can be used 
as an alternative name of 
this parameter for this 
setting) 

-Clear @{ 
RejectMessagesFrom } 
   Or 
-Clear @{ UnauthOrig 
} 

RejectMessagesFromGro
up 
(DLMemRejectPerms can 
be used as an alternative 
name of this parameter 
for this setting) 

-Clear @{ 
RejectMessagesFrom 
Group } 
   Or 
-Clear @{ 
DLMemRejectPerms } 

  As the value of objects for each parameter, the 
setting accepts all of the identities supported by 
the parameter. For example, for SearchContainer 
parameter, the setting can accept the 
distinguished name (DN) and globally unique 
identifier (GUID) of the domains or containers to 
be searched for the group members.  

ClearSet Clears the specified notification recipients set. 
Possible values are: 
 All 
 Recipients  
 PasswordExpiry (Password Expiry group 

notifications) 
 ML (Membership life cycle notifications) 



Chapter 15 - GroupID Commandlets Parameters 

134 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 MB (Managed by life cycle notifications) 

ClientName Name of GroupID client such as Automate, 
Management Shell, GroupID Mobile Service, each 
Self-Service portal, each Password Center portal. 

Company The company of user, contact or mailbox. 
ConfiguredExchange Specifies the messaging system that GroupID uses 

for creating the e-mail addresses of mail-enabled 
objects. The default value 1 uses the latest 
version of Exchange installed if GroupID is 
connected to a domain with multiple versions of 
Exchange. You can change the system to any of 
the following values: 
 2007 (for Exchange 2007) 
 2010 (for Exchange 2010) 
 2013 (for Exchange 2013) 
 2016 (for Exchange 2016) 
 2019 (for Exchange 2019) 
 0 (for AD-only domain) 
 2 (other messaging system) 

Connected Used to request connected identity store to the 
current instance of GroupID Management Shell. 

Container The distinguished name (DN) or globally unique 
identifier (GUID) of one or more containers where 
you want to search for a user, contact or group. 
Separate multiple values with commas. 

Country Country of a user, contact or mailbox, represented 
as the 2-character country code based on ISO-
3166. 

CreateFlatManagerialList Setting a True value creates this dynasty as flat 
managerial list. A flat managerial list is a form of 
managerial dynasty in which all direct reports of 
the top manager and sub-level managers are 
added as members of one group and no separate 
groups are created for the sub-ordinates of the 
top manager’s direct reports. 
If this setting is set to True, the flat operation is 
performed on the next update of the dynasty 
where it breaks its current hierarchy and re-builds 
the memberships of the parent group on the flat 
dynasty logic. 
(Applies to Managerial Dynasty)  

CriteriaFilters Same as RoleCriteriaFilters 
CriteriaScope Same as RoleCriteriaScope 



Chapter 15 - GroupID Commandlets Parameters 

135 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
Credential  The $Credentials environment variable holds the 

user's authentication information. Use this 
variable to execute the commandlet using the 
credentials of a user account other than the one 
you are logged on to the connected identity store. 

CustomAttribute1-15 A value for an attribute that you determine. Use 
these attributes—up to 15—to store additional 
information specific to your needs. 

D  
Database SQL database name of previous GroupID version. 
DataSourceConnection Set or modify connection string of an external 

data source in Query Designer of a Smart Group or 
Dynasty. 

DataSourceName The name of the database that contains the table 
or view you want to use for your query. This 
parameter is applicable on the following data 
source types: 
 Microsoft SQL Driver 
 Oracle 

DataSourcePassword The password for the specified user account to 
use for connecting to the specified data source.  

DataSourceQuery Specifies the database query to execute to 
retrieve results from the data source. This can be 
a query statement and can include multiple 
columns separated by commas (,). The field names 
are enclosed in brackets ([ ]) to prevent any 
ambiguity that the query engine might encounter 
because of spaces between column names. 
GroupID Management Shell also needs to know 
how the information in the source relates to the 
directory so it can find the recipients identified in 
the data source in the directory and add them to 
the group. This relation is defined through the 
LdapFilter parameter. If no match is found, the 
data source entry will be skipped. 

DataSourceType Use this parameter to combine an external data 
source with Active Directory to determine the 
group membership. When a connection is 
configured, GroupID Management Shell connects 
to the database and retrieves results. It then 
queries Active Directory to find matching records. 
The parameter can also be used to connect to 



Chapter 15 - GroupID Commandlets Parameters 

136 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
external directories. Specify any of the following 
external data source types: 
 Text Driver 
 ODBC Data Source 
 Sun ONE iPlanet Driver 
 Lotus Notes 
 Microsoft SQL Driver 
 Oracle 

DataSourceUserName The username of the account to use for 
connecting to the specified data source. 

DaysInterval Specified the daily interval for daily triggers. 
DefaultAllowPermissions By default, all permissions except those specified 

in RolePermissions are denied. The application of 
this parameter overrides the default behavior and 
causes all of the permissions except those 
specified in RolePermissionNames to be granted. 

DefaultApprover Specifies the default approver for an identity 
store. 

DefaultExpirationPolicy The default expiry days to set for new groups at 
creation, which can later be changed for groups 
individually using the Set-SmartGroup 
commandlet. The default value 0 implies that the 
groups will never expire.  

DefaultGroupApprover The distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of the 
default approver to whom notifications will be 
sent for groups having no owners. 

DefaultGroupDeletionTimeAf
terExpiry 

The number of days after which an expired group 
should be deleted. The default value is 30. This 
parameter only applied if the value of the 
DeleteExpiredGroups parameter has been set to 
True. 

DefaultMaximumNumberOf
Members 

The maximum number of members a group can 
have.  

DefaultMaximumNumberOf
MembersToDisplay  

The maximum number of items to display in the 
Automate groups list. The default limit is set to 
1000.  

DefaultNumberOfOwnersTo
Display 

The number of most recently used recipients (set 
as group owners) to show on the shortcut menu 
when setting the owner for multiple groups. The 
default value is 5. 



Chapter 15 - GroupID Commandlets Parameters 

137 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
DefaultReportToMessageOrg
inator 

Setting its value to True sends non-delivery 
reports (NDR) to the message originator (sender). 
By default, it is set to False. 

DefaultReportToOwner  Setting its value to True sends non-delivery 
reports (NDR) to the group owner. By default, the 
value is set to False. 

DefaultRequestDeletionTime Workflow requests older than the number of days 
given in this parameter will be deleted by the 
CleanupApprovedRequests, 
CleanupDeniedRequests and 
CleanupPendingRequests settings. The default 
value of this setting is 30. 
Note: This setting applies only if the 
DeleteRequests setting is set to True. 

DefaultStartWithGlobalCatal
ogInQueryDesigner 

Its default value True sets the Global Catalog as 
the default scope for searches on the Query 
Designer. Changing its value to False searches the 
logged-on domain only. 

DefaultUnusedGroupsExpirat
ionTime 

This setting is related to the group usage lifecycle 
and applies only if the 
GroupUsageLifecycleEnabled and 
ExpireUnusedGroups settings are set to True.  
Its value is the unused period (in number of days) 
of the lifecycle period for a mail-enabled 
distribution group after which its life is reduced 
to 7 days. The default value of this setting is 60 
days. 

DeletedObjects It is a switch, if present then delete object 
replication will be started. 

DeleteEmpty Setting its value to True forces Automate to 
delete Dynasty children when they are empty or 
when their parents are deleted. The default value 
is False. 

DeleteExpiredGroups The default value True enables the automatic 
deletion of expired groups according to the 
number of days specified in the 
DefaultDeletionTimeAfterExpiry parameter. 

DeleteNestedOrphanGroups This parameter deletes nested orphan groups 
according to the following rules: 
  If the maximum membership value is reached 

and the Do not update option is selected, then 
the parameter has no effect.  



Chapter 15 - GroupID Commandlets Parameters 

138 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 If the maximum membership value is reached 

and the Nest into child groups option is 
selected, then, upon membership update, 
more nested child groups are created and 
orphan nested groups are deleted. 

 If the maximum membership value is 
increased then upon the group's membership 
update, members from the nested child 
groups are moved into the parent group and 
the nested groups are orphaned. This 
parameter deletes the nested groups. 

DeleteRequests The default value True enables the removal of 
older workflow requests, a feature that removes 
those approved, pending, and denied workflow 
requests that are older than the number of days 
specified in the DefaultRequestDeletionTime 
setting.  

Department The department of a user, contact or mailbox. 
Description Used to provide description of an entity while: 

 creating a new group (managed or 
unmanaged) or dynasty. 

 modifying a user, contact, group (managed or 
unmanaged) or dynasty. 

 converting a static group to a smart group. 
DestinationContainer The distinguished name (DN) or globally unique 

identifier (GUID) of the container that you want to 
move the group to. The destination container 
must be part of the same forest. 

DirectReports Provide any of the following identity for the direct 
report: 
 Distinguished name (DN) 
 Globally unique identifier (GUID) 
 Comman-name (Cn) 
 Name 
 SamAccountName 

DisableAttributeUpdation Specifies that attribute updation should not occur 
when Profile Validation cycle of a user is expired. 

Disabled In some commandlet this parameter is used to 
retrieve disabled entities such as disabled 
schedules or identity stores and in some it 
disables an entity. 

DisableExpiredGroupDeletio
n 

Disables the deletion of the expired groups. 



Chapter 15 - GroupID Commandlets Parameters 

139 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
DisableGroupAttestation Disables the group attestation at identity store 

level. 
DisableGUSLifecycle Disables the group usage life cycle of groups at 

identity store level. 
DisableNewProfileValidation
Lifecycle 

Disables the profile validation of new profiles. 

DisableOrphanGroupDeletio
n 

Disables deletion of orphan groups when, upon 
membership update, they become orphan. 

DisableOutOfBoundsAlerts Disables generation of out of bound alerts to 
group owners upon membership threshold and 
does not update the membership. 

DisableSecurityGroupsExpiry Disables expiration of the security groups. 
DisableSWAuthenticationVia
Email 

Disables second way authentication via email. 

DisableSWAuthenticationVia
Mobile 

Disables second way authentication via mobile. 

DisableSWAuthenticationVia
SecurityQuestions 

Disables second way authentication via security 
questions. 

DisableValidationDateRemov
al 

Causes the validation date not to be cleared after 
the profile validation has been expired. 

DisallowingPasswordExcepti
onFilePath 

Specifies the path to a file containing a list of 
strings that cannot be set as password. 

DisplayName Display name while  
 creating a user, contact, group (managed & 

unmanaged), dynasty or mailbox. 
 modifying a user, contact, group (managed & 

unmanaged), dynasty or mailbox. 
 converting a static group to a smart group. 
 retrieving a tombstone object. 

DisplayNameTemplate Specifies the pattern for generating display 
names for Dynasty children. For the Managerial 
Dynasty, the template must contain the 
%MANAGER% keyword in the input string. This 
keyword is replaced with the respective manager. 
For all other Dynasties, the value must contain 
the %GROUPBY% keyword in input string for 
replacement with the respective GroupBy value. 

DistinguishedName Distinguished name of an object in directory. 
Domain Domain name of the provider mentioned in a 

commandlet. The domain name can be of an 
Active Directory domain, Azure domain or 
messaging provider’s domain. This parameter 



Chapter 15 - GroupID Commandlets Parameters 

140 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
becomes available depending on the value of 
other parameters.  

DomainExpiration (Applies to Password Expiry group.) The domain 
expiration policy for the group. This policy allows 
you to specify maximum password age. The 
default value is 42 days. 

DynastyManagerAsMember Set its value to True to add the manager of direct 
reports to the membership of the direct reports 
group so that the manager receives a copy of any 
e-mail sent to the group. The default value is 
False. 

E  
EmailAddress A valid email address of a user, contact, mailbox 

or group (if mail-enabled) 
EmailProviderDomain This setting applies if the ConfiguredExchange 

setting is set to 2. 
Its value is the domain name of the external e-
mail provider. For example, googlegroups.com. 

EmailTemplatePath Location of the email template that will be used 
while sending an email notification to a user or 
group. 

EnableAttributeUpdation Enables attribute update when a user is expired in 
Profile Validation cycle. It sets the given string as 
the attribute’s value for the user. 

Enabled In some commandlet this parameter is used to 
retrieve enabled entities such as enabled 
schedules or identity stores and in some it 
enables an entity. 

EnableExpiredGroupsDeletio
n 

Enables the deletion of expired groups. 

EnableGroupAttestation Enables the group attestation i.e. to review and 
validate the attributes and membership of an 
expiring group before renewing it. 

EnableGUSLiefecycle Enable group usage life cycle i.e. set the expiry of 
mail-enabled distribution groups based on their 
usage. 

EnableNewProfileValidation
Lifecycle 

Enables profile validation for newly found user 
objects (by way of newly created objects or by 
way of disabled object enabled again) in the 
directory.  

EnableNotifications Enables notifications in a schedule. 



Chapter 15 - GroupID Commandlets Parameters 

141 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
EnableOrphanGroupDeletion Enables deletion of orphan groups when, upon 

membership update, they become orphan. 
EnableOutOfBoundsAlerts Enables generation of out of bound alerts to 

group owners upon membership threshold and 
does not update the membership. 

EnableSecurityGroupsExpiry Enables expiry of security groups. 
EnableSWAuthenticationViaE
mail 

Enables second way authentication via email. 

EnableSWAuthenticationVia
Mobile 

Enables second way authentication via mobile. 

EnableSWAuthenticationViaS
ecurityQuestions 

Enables second way authentication via security 
questions. 

EnableUpdate Specify False to disable the group update and 
scheduled job process. Default value is True. 

EnableValidationDateRemov
al 

Clears the validation date if X number of days 
have passed since the last validation date. In case 
of a rehire scenario, the object will be treated as a 
newly created object and the validation process 
for new users will apply to it. 

EndDate Date on which membership will end or restore.  
Or  
Date on which membership will end/restore, or a 
schedule will end. 

EnforceOutOfBounds Set its value to True to break a group into nested 
child groups when it reaches the maximum 
membership limit, specified in the 
DefaultMaximumNumberOfMembers parameter. 
The default value False prevents any action from 
being taken when the membership limit is 
reached. 

EnrollmentEnabled Enables / Disables enrollment on an identity 
store. 

EnrollmentType Possible values are: 
 None 
 Mobile 
 SecurityQuestions 
 Email 
 Authenticator 
 LinkAccount 
 PhoneID 
 Yubikey 
 WindowsHello 
 All 



Chapter 15 - GroupID Commandlets Parameters 

142 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 Any 

ExcludeNestedLists Setting a True value excludes child Dynasties 
from the membership of the parent Dynasty. The 
default structure of Managerial Dynasty adds the 
Smart Group of sub-level manager in the 
membership list of the top-level manager’s Smart 
Groups. 
(Applies to Managerial Dynasty)  

ExcludeOUs The default value True excludes from exploration 
the organizational units specified in the 
IncludeExcludeOUs parameter. Setting its value 
to False applies the expiration only on the 
organizational units specified in the 
IncludeExcludeOUs parameter and excludes the 
rest. 

ExcludeRecipients The distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of one or 
more objects that you want to exclude statically 
from the group membership regardless of 
whether they are returned by the query.  

ExpansionServer The name of the Expansion server. The Expansion 
server is the Exchange server responsible for 
expanding a distribution list and creating a 
message for each of the members. 

ExpirationPolicy Set the expiration policy for the group. This 
parameter does not work for Dynasty children 
since they inherit the expiration policy of their 
parent Dynasty and you cannot change it 
explicitly at child level.  

ExpirationRange The expiration range policy for the group. This 
policy defines when GroupID Management Shell 
will include a user in the membership of the 
Password Expiry group. For example, a domain 
expiration policy is configured with a maximum 
password age of 30 days. Setting the expiration 
range policy to 10 will include users in the 
membership of the Password Expiry group who 
have passwords aged 20 days or older. 
(Applies to Password Expiry group) 

ExpiredGroupsDeletionInterv
al 

Number of days since groups expiry after which 
the groups shall be deleted. 

ExpireUnusedGroups This setting is related to the group usage lifecycle 
and applies only if GroupUsageLifecycleEnabled 



Chapter 15 - GroupID Commandlets Parameters 

143 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
is set to True.  
The value True reduces the life of mail-enabled 
distribution groups that have not been sent any e-
mail for a particular period. This unused period is 
defined in the 
DefaultUnusedGroupsExpirationTime setting. 
Under its default value False, the life of unused 
groups is always extended as soon as they reach 
their expiration date. 

ExtendGroupLife Extend the life of the group as per the 
ExpirationPolicy parameter's value. The default 
value of this parameter is True, so specifying a 
value is not required. 

ExtensionDataAttributes By default, ExtensionDataAttribute attribute is 
used for storing the value. In case it has been 
modified then this parameter must specify the 
attribute being used for storing the value. 

F  
FileLoggingEvent Set the event for which file logs are generated. 
FilePath The path of the text file, if the value of the 

DataSourceType parameter is Microsoft Text 
Driver. 

FilterOperation Operation to perform on role criteria filters 
Filters Specifies how the values of group-by attributes 

are stripped out for creating the child groups. This 
parameter allows you to collapse several different 
values into one. Use any of the following as a 
value of this parameter: 
 <Blank value> - Do not use any filter and 

create a group for each distinct value of the 
attribute. 

 Left <Number of characters> - Selects the 
specified number of characters from the 
attribute starting from the left-end of the 
string. Each distinct set of selected characters 
from the group-by attribute is then used to 
create a group. 

 Right <Number of characters> - Selects the 
specified number of characters from the 
attribute starting from the right-end of the 
string. Each distinct set of selected characters 
from the group-by attribute is then used to 
create a group. 



Chapter 15 - GroupID Commandlets Parameters 

144 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 %GROUPBY%/<the part of the value to leave 

out> - Use this filter when you have a 
character separator. Specifying this filter 
creates a group for each distinct value of the 
portion of the attribute selected. 
%GROUPBY% represents the significant 
portion of the value. After the slash, you can 
specify the portion you want to leave out of 
the attribute's value. Specifying * after the 
slash leaves out any portion of the value that 
occurs after the slash. 

For multiple group-by attributes, provide a filter 
values for each attribute separated by a comma 
(,). 

FirstName The first name of a user, contact or mailbox. 
FromEmail Email address that SMTP uses to send emails 

from. 
FromEmailAddress The e-mail address to use for sending 

notifications 

G  
GenerateOnedayToExpiryRe
port 

The default value True notifies the group owner 
of its expiry one day before the expiration date. 
Set its value to False to disable this notification. 

GenerateSevenDaysToExpiry
Report 

The default value True notifies the group owner 
of its expiry seven days before the expiration 
date. Set its value to False to disable this 
notification. 

GenerateThirtyDaysToExpiry
Report 

The default value True notifies the group owner 
of its expiry thirty days before the expiration date. 
Set its value to False to disable this notification. 

GroupAlias Alias for the new group, distribution group or 
dynasty. 
The alias can be a combination of characters 
separated by a period without any spaces. Avoid 
using special characters in the alias. The 
Exchange alias is limited to 64 characters, must 
be unique and should not contain spaces. 

GroupBy Name of the group-by attribute. Separate multiple 
attributes with commas (,). This parameter is 
required for all Dynasties except the Managerial 
Dynasty. 

GroupIdentity The distinguished name (DN), globally unique 
identifier (GUID), security identifier (SID), 



Chapter 15 - GroupID Commandlets Parameters 

145 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
canonical name (CN) or SamAccountName of the 
group to add members to. 

GroupIDVersion Previous GroupID version to upgrade from. This 
parameter accepts integer values e.g. 7.0, 8.0 and 
9.0. 
 7.0 = GroupID 7.0 
 8.0 = GroupID 8.0 
 9.0 = GroupID 9.0 

GroupLifeDays Specifies the number of days to extend / reduce 
(depending on the configured extension policy) if 
the group has not been used this number of days. 

GroupNamePrefixes One or more prefixes configured in GroupID 
configurations. They are prefixed with the group 
name and display name when you create a new 
group or modify an old group using the Properties 
option. 

GroupScope Specify the scope for the group or dynasty. The 
available group scopes are: Universal, Global, and 
Domain Local. 

GroupType Specify the group types for upgrade: 
1 = Non-managed groups 
2 = Smart Groups 
3 = Parent Dynasty 
4 = Middle Dynasty 
5 = Leaf Dynasty 
6 = Password Expiry Smart Group 
Note: When a specific dynasty is upgraded it is 
recommended to upgrade the whole dynasty 
using the SearchContainer parameter and update 
it after running the Upgrade-Group command 
(provided that the whole Dynasty is in the same 
container). 
If a specific parent or middle or leaf Dynasty is 
upgraded using the Upgrade-Group command, 
update will be required to link it with the Dynasty 
chain (provided that all the Dynasties are 
upgraded to GroupID 8.1). 

GroupUsageLifecycleEnabled Set its value to True to enable the group usage 
lifecycle feature. This lifecycle is executed by 
Group Management Service (GMS) for mail-
enabled distribution groups and adds an 
additional rule to their regular expiration process. 
Under this lifecycle, if no e-mail is sent to a mail-



Chapter 15 - GroupID Commandlets Parameters 

146 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
enabled distribution group for a particular period, 
you can set GMS to reduce its expiration date to 7 
days. Under its default behavior, unused 
distributions groups are never expired. As soon as, 
they reach their expiration date, their life is 
extended by reapplying the expiration policy on 
them. 

H  
HavingNotifications Used to select those schedules having 

notifications enabled. Used only in Get-Schedule 
HiddenFromAddressListEnab
led 

Specifying a True value prevents the group from 
appearing in Exchange address lists. The default 
value is False. 

HideMembership Setting its value to True hides group membership 
in the Outlook address book. The default value is 
False. 

HideMembershipFromAddres
sListEnabled 

A True value prevents the group membership 
from appearing in the Outlook address book. The 
default value is False. 

HistoryActionsOperation The operation on actions that the history will 
keep track of. Possible values are: 
 Add 
 Remove 
 Remove all 

HistoryRetention Specifies the interval for which the history is 
tracked. Possible values are: 
 All 
 Last_30_Days 
 Last_60_Days 
 Last_90_Days 
 Last_120_Days 
 Last_6_Months 
 Last_1_Year 
 Last_2_Years 
 Last_5_Years 

HistorySelectedActions The actions that the history will keep track of. 
Possible values are: 
 OwnershipChange 
 AdditionalOwnerChange 
 ExpirationPolicyChange 
 GroupExpireRenew 
 QueryChange 
 SecurityTypeChange 



Chapter 15 - GroupID Commandlets Parameters 

147 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 ObjectCreated 
 ObjectDeleted 
 IdentityStoreHistory 
 SecurityRolesHistory 
 WorkflowsHist 

HistoryTrackingOption Specifies what the history will keep track of. 
Possible values are: 
 Nothing 
 All_Actions 
 Selected_Actions 

Home First home phone number of a user, contact or 
mailbox. 

Home2 Second home phone number of a user, contact or 
mailbox. 

HomePage The link of a user, contact, group or mailbox’s 
profile or home page. 

I  
Identity Supported identities are: 

 Distinguished name (DN) 
 Globally unique identifier (GUID) 
 Comman-name (Cn) 
 Name  
 SamAccountName 

IdentityStoreId Unique identifier of identity store. 
IdentityStoreName Name of an identity store. 
IdentityStoreType Specify the type of an identity store. Possible 

types are: 
 ActiveDirectory 
 WindowsAzure 
 GSuite 

IgnoreConnectionFail While creating an identity store, an active service 
account and valid credentials are required for 
connecting to an identity store. This parameter 
overrides this behavior and creates the identity 
store even if the connection is not active or the 
credentials are invalid.  

IncludeAllContainers Applies when JobType is set to GUS. This 
parameter includes all containers in the schedule.  

IncludeAllMessagingSystems Applies when JobType is set to GUS. This 
parameter includes all messaging systems in the 
schedule. 



Chapter 15 - GroupID Commandlets Parameters 

148 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
IncludeDisabledUsers (Applies to Password Expiry group.) Specifying 

this parameter includes disabled users in the 
group membership. 

IncludeEntityTypes Used only in Get-RolePermissionNames. This 
parameter retrieves the permission categories 
alongwith the permission name. 

IncludeExcludeOUs The distinguished name (DN) or globally unique 
identifier (GUID) of one or more organizational 
units to include in or exclude from expiration. The 
behavior of this setting depends on the value set 
for ExcludeOUs parameter. 

IncludeManagerAsMember Setting a True value includes each manager as a 
member of their direct reports group; so that, 
whenever an e-mail is sent to the direct reports 
group, their manager also receives a copy of it. 
(Applies to Managerial Dynasty only) 
Note: If this setting is set to True, the manager 
will be included to the membership of direct 
reports on the next update of the dynasty. 

IncludePasswordNeverExpire
Users 

Specifying this parameter includes users whose 
password never expires in the group membership. 
Skipping this parameter excludes them from the 
group membership. 
(Applies to Password Expiry group)  

IncludeRecipients The distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of one or 
more objects that you want to include statically in 
the group membership regardless of whether they 
are returned by the query.  

InheritanceBehavior Specifies whether Dynasty children should inherit 
attributes from their parent. The attributes that 
Dynasty children inherit are stored in the 
InheritedAttrs option, which can be viewed using 
the Get-Options commandlet. Values are: 
 0 (Inherit selected attributes only on creation) 
 1 (Always inherit selected attributes) 
 3 (Never inherit selected attributes) 

InheritedAttrs One or more attributes of the parent Dynasty 
whose values you want its children to inherit at 
creation or when it is updated. 

Initials The initials of a user, contact or mailbox. 
InlineImageFile The path of the image file that you want to 

include in the e-mail notification. This image is 



Chapter 15 - GroupID Commandlets Parameters 

149 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
included in the e-mail body; it is not sent as an 
attachment. 

IsExpired A True value of the parameter expires the group 
and a False value renews the group. This 
parameter does not work for Dynasty children 
since they expire with the parent. 

IsPasswordExpiryGroup Specifying this parameter creates a Password 
Expiry group. If skipped, a simple Smart Group 
will be created. 

IsPasswordExpirySmartDL Specifying this parameter is mandatory if you are 
updating a Password Expiry group. If this 
parameter is skipped, the group will be converted 
to a simple Smart Group. 

IsPreciseSearch If object types parameter is defined, 
IsPreciseSearch will force search results for those 
particular object types only. 

IsSecurityGroupExpirationPl
uginEnabled 

Set its value to True to enable the security group 
expiration feature. By default, it is set to False. 

J  
JobType Type of the schedule (e.g. SmartGroup, GUS etc.). 

This parameter is used in some cmdlets to 
retrieve the schedules by job type. In New-
Schedule, it is used to set the type of schedule. 

K  
KeepHistoryOption Specifies the length of time to retain history 

records in the GroupID database. The default 
value 0 retains all history data of the actions 
specified by the ChangeTrackerActions setting. 
You can change it to any of the following values: 
 1 (for 30 days) 
 2 (for 60 days) 
 3 (for 90 days) 
 4 (for 120 days)  
 5 (for 6 months)  
 6 (for 1 year)  
 7 (for 2 years) 
 8 (for 5 years) 
The setting does not destroy the older history 
data. Rather, it exports the older data to an Excel 
file for later reference. This Excel file is created in 
the HistoryBin folder in the GroupID installation 
directory. Group Management Service performs 



Chapter 15 - GroupID Commandlets Parameters 

150 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
the history data export. With every execution of 
the service, it checks the specified period against 
Keep History option for the domain and exports 
the older data to the Excel file (if found). 

KeepUserHistory It upgrades the history of the groups. 
KeyMapAD Specify the primary key for provider in external 

data source in Query Designer. 
KeyMapDB Specify the primary key for Database in external 

data source in Query Designer. 
KillAtDurationEnd The schedule job will be forced to terminate if it's 

still running at the end of its duration. 

L  
LastName The last name of user, contact or mailbox. 
LdapFilter The LDAP search filter that defines your search 

criteria. This parameter stores your query. 
A Smart Group can dynamically build its 
membership according to the query associated 
with it.  
Similar to Smart Group, a Dynasty has the 
capability to dynamically build its membership 
according to the query associated with it. 

LDAPSearchContainer The container for the Sun ONE iPlanet data 
source. 

M  
MailEnabled Specifies whether to create a mail-enabled user, 

contact or group (managed & unmanaged). 
Provide a True value for mail-enabled object, 
otherwise a non-mail-enabled object will be 
created.  

MailBoxStore Specifies which mailbox store will be used. 
ManagedBy The distinguished name (DN), globally unique 

identifier (GUID) or samAccountName of the user, 
contact or group (security groups only) that you 
want to set as the group owner or manager. 
Passing a blank value for this parameter will 
remove the manager. 

Manager Provide any of the following identity for the 
manager of the user: 
  Distinguished name (DN) 
 Globally unique identifier (GUID) 
 Comman-name (Cn) 
 Name  



Chapter 15 - GroupID Commandlets Parameters 

151 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 SamAccountName 

MatchingCriteria Used in Get-Schedule.  
Number of criteria (for example TriggerType and 
JobType) can be used to retrieve schedules, this 
parameter describes how to join the criteria by 
using Or and And. 

MaximumMembersPerGroup Specifies the maximum number of members that 
a group can hold. If this limit is reached, out-of-
bounds configurations are applied to the group. 

MaximumMembersToDisplay The number of members to display for a group on 
the Members tab. 

MaximumPasswordAge The parameter has no effect on the group to be 
modified. 

MaxItemsToDisplay The maximum number of objects the commandlet 
should return.  

MaxiumumAliasLength This setting works if the ConfiguredExchange 
setting is set to 2. Its value is the maximum 
number of characters that an external e-mail alias 
can contain. The minimum value is 10. The 
default value is 64. 

MaxSendSize The maximum allowed e-mail message size in 
kilobytes (KB) that can be sent from the group. 
(Applies to Distribution groups only)  

MembershipCountThreshold Triggers an out-of-bound exception if the number 
for current or new membership exceeded than the 
specified number.  

MembershipPercentageThres
hold 

Specifies that if out-of-bounds alerts are enabled, 
membership should stop if updation would cause 
this percentage of members change in the group 
and generate a notification to owners. 

MessagingSystems Applies when JobType is set to GUS. Use this 
parameter to specify the message systems for 
GUS job. This parameter and 
IncludeAllParameters cannot be applied both at 
the same time. 

MinimumPasswordAge The parameter has no effect on the group to be 
modified. 

Mobile Cell number of user, contact or mailbox. 
MsExchCoManagedByLink 
 
(ExchangeAdditionalOwners 
can also be used as an 

The distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of one or 
more users that you want to set as Exchange 
additional owners. This setting applies only if 



Chapter 15 - GroupID Commandlets Parameters 

152 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
alternate name of this 
parameter) 

Exchange Server 2010 is deployed in your 
environment. 

MsExchRequireAuthToSendT
o 

Set its value to True if you want senders to be 
authenticated for sending e-mails.  

N  
Name  The name of the new organizational unit, group, 

query-based-distribution group or dynasty being 
created. 
Get-ImanamoCommand 
Gets information only about commandlets or 
command elements with the specified name. 
Wildcard search is also supported.  

NewName New name of an identity store or a schedule. 
NewProfileValidationLifecycl
e 

The number of days within which new users 
should validate their profiles.  

Notes Description text about a user, contact, group, or 
mailbox that appears on the General tab of their 
Properties dialog box. 

NotificationSendingCriteria When a notification for a scheduled job is to be 
sent. Possible values are: 
 Always 
 OnSuccess 
 OnFailure 

NotifyAddedMembers Notify objects when they are added to the 
membership of a group. 

NotifyLoggedInUsers Specify whether the logged in users should be 
notified for changes they make to directory 
objects using Automate, Self-Service portal, 
Management Shell, GroupID mobile app, and 
Password Center portal. 
This setting applies only to mail-enabled users. 

NotifyModifiedObject Specify whether to send email notification to an 
object (group, user, contact) being modified. 
For group, group members are notified. 
For contact and user, the particular contact or 
user is notified about the changes. 

NotifyOptOutAdditionalOwn
ers 

Excludes some or all additional owners from 
receiving all expiry deletion and renewal 
notifications. 

NotifyOwners Specifies whether the to send notification emails 
to the primary and additional owners (for groups), 



Chapter 15 - GroupID Commandlets Parameters 

153 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
and managers of users/contacts about changes 
made to the respective objects. 

NotifyPublicGroupOwner Specify whether to send email notifications to the 
primary and additional owners of a public group 
upon membership change. 

NotifyUserGroupJoinMB Specify whether to send email notification to 
users when they are added as additional owner or 
manager to the membership of a group. 

NotifyUserGroupJoinML Specify whether to send email notification to 
users when they are added in a group. 

NotifyUserGroupLeaveMB Specify whether to send email notification to 
users when they are removed as additional owner 
or manager of a group. 

NotifyUserGroupLeaveML Specify whether to send email notification to 
users when they are removed as member from a 
group. 

Noun Shows information about commandlets or 
command elements having the specified noun in 
their name. Wildcard search is also supported. 

NumberofOwnersToDisplay The maximum value that can be set for the 
DefaultNumberOfOwnersToDisplay parameter. 24 
is the maximum. 

O  
Office Office phone number of a user, contact or 

mailbox. 
Operator Same as RoleCriteriaOperator 
Options The list of options to be retrieved from the 

registry. 
OrganizationalUnit The distinguished name (DN) or globally unique 

identifier (GUID) of the container where you want 
to create a user, contact, group or mailbox. 

OutOfBoundsAlertEnabled Set to True to enable out-of-bound exceptions 
when group memberships change. Out-of-bound 
exceptions prevent massive changes from 
occurring to group memberships. When an out-of-
bounds exception occurs, the group membership 
is not updated and the owner or administrator is 
notified via e-mail. If the owner or administrator 
determines that the change is valid they can 
update the group manually. 

OutOfBoundsMinimum This setting works in conjunction with 
OutOfBoundsPercentage. If both the percentage 



Chapter 15 - GroupID Commandlets Parameters 

154 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
and the current membership or new membership 
exceeds the number specified for this parameter, 
an out-of-bounds exception will occur. The 
setting applies only if the 
OutOfBoundsAlertEnabled parameter is set to 
True. 

OutOfBoundsPercentage The out of bound percentage that is calculated by 
adding the number of members being added to 
the group and the number of recipients being 
removed from the membership and then dividing 
the result by the total number of new members. 
This setting works in conjunction with 
OutOfBoundsMinimum. If both the percentage 
and the OutOfBoundsMinimum limit is exceeded, 
an out-of-bounds exception will occur. The 
setting applies only if the 
OutOfBoundsAlertEnabled parameter is set to 
True. 

P  
P12CertificatePath Specify the location of a P12 certificate file for a 

Google based identity store. Note that this 
parameter appears depending on the values of 
other parameters. 

PageSize The number of history records to show on a page 
on the History tab of the group Properties dialog 
box. 

ParentContainer The distinguished name (DN), globally unique 
identifier (GUID) or security identifier (SID) of the 
container where you want to create a new 
organizational unit. To create the container at 
root level, pass the DN of the domain as the value 
of the parameter. 

Password Password of SQL user name. 
PasswordCenterSupportURL The default URL of the online help for Password 

Center portals. This URL is set by default for all 
new portals created using Password Center. 

PasswordExceptionOperatio
n 

The operation to perform on the values supplied 
in the PasswordExceptions parameter. 

PasswordExceptions Specifiy the password exceptions. This parameter 
accepts 2-Length arrays. First index contains the 
operator and the second index contains the value. 
Possible values for operator are: 
 Equals 



Chapter 15 - GroupID Commandlets Parameters 

155 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 Startswith 
 Endswith 
 Contains 
 Regexp 
Example: @('contains', 'webdir123R) is a valid 
value 

PasswordPortalUrl Specify the Password Portal Url. 
PasswordRuleOperation The action to perform on the values supplied in 

the PasswordRules parameter. 
PasswordRules Specify the regular expressions (rules) for 

passwords. 
PermissionOperation The operation to perform on the Permissions 

parameter. 
Permissions Same as RolePermissions. 
Port Specify the port number for the specified data 

source.  
PowerTools Include respective power tools to execute script 

in Query Designer of Smart Group.  
ProfileValidationGroupDN Specify the distinguished name of a group to 

apply profile validation on. 
ProfileValidationReminderO
peration 

Specify the operation to perform on the value of 
the ProfileValidationReminders parameter. 

ProfileValidationReminders Specify the profile validation reminders. Values 
are supplied as 2-length array. The first index 
contains the name of reminder and the second 
index contains the number of days the reminder is 
sent to the user relative to the days left for the 
profile validation period to end. 
Example: @'first', 15) indicates a reminder named 
first with 15 days 

Provider Specify a provider for messaging server. The 
supported providers are: 
 Office 365 
 Suite 
 Exchange 2010 
 Exchange 2013 
 Exchange 2016 
 Exchange 2019 

Q   
QuestionOperation Specify the operation to perform on the 

SecurityQuestions parameter. 



Chapter 15 - GroupID Commandlets Parameters 

156 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
QueueEmail Specifying this parameter sends the notification 

e-mail through Imanami Email Service. Imanami 
Email Service maintains a queue of all 
notifications to be sent by GroupID and ensures 
that they are delivered when the SMTP server is 
down. 
If this parameter is left out, the notification e-
mail is sent directly without being added to the 
notification queue. Consequently, if the 
configured SMTP server is down, the e-mail is 
lost. Therefore, it is recommended that you use 
this parameter in every Send-Notification 
command.  

R  
Recipients Specify recipients for the job completion email 

notifications. 
RegularProfileValidationLife
cycle 

Specify the number of days for the profile 
validation life cycle period. 

RejectMessagesFrom The distinguished names (DN), globally unique 
identifiers (GUID) or samAccountNames of the 
mailbox users and mail-enabled contacts who are 
not allowed to send e-mail messages to the 
group. 
(Applies to Distribution groups only)  

RejectMessagesFromGroup The distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of one or 
more groups or users, the group is restricted to 
accept messages from. Separate multiple 0bjects 
with commas (,). 
(Applies to Distribution groups only.) 

Remove  Set-User, Set-Contact, Set-Mailbox 
It will remove the values of specified attributes. 
Set-Group 
This setting applies to the AdditionalOwners 
parameter and lets you remove one or more 
additional owners for this group.    
The syntax in which the value is entered for this 
setting is:  
-Remove  @{ AdditionalOwners = 
"Owner1","Owner2","Owner3"}  
-Remove @{ AcceptMessagesOnlyFrom = 
"User1","User2","User3"}  
-Remove @{ AcceptMessagesOnlyFromGroups = 



Chapter 15 - GroupID Commandlets Parameters 

157 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
"Group1","Group2","Group3"}  
-Remove @{ RejectMessagesFrom = 
"User1","User2","User3"}  
-Remove @{ AcceptMessagesOnlyFrom = 
"Group1","Group2","Group3"}  
As the value of objects to be removed, the setting 
accepts all the identities supported by the 
AdditionalOwners parameter, which is the 
distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of the user 
contact, or security group.   
Set-SmartGroup, Convert-Group, Set-Dynasty 
This setting applies to the following multi-valued 
parameters and lets you remove one or more 
values from these parameters. Parameters and the 
syntax for their values follows: 

  Parameter Syntax 
  SearchContainers 

(StartPaths can be used 
as an alternative name of 
this parameter for this 
setting) 

-Remove  @{ 
SearchContainers = 
"Container1","Contain
er2"} 
   Or 
-Remove  @{ 
StartPaths = 
"Container1","Contain
er2"} 

  IncludeRecipients 
(Includes can be used as 
an alternative name of 
this parameter for this 
setting) 

-Remove  @{ 
IncludeRecipients = 
"Object1","Object2"} 
   Or 
-Remove  @{ Includes 
= "Object1","Object2"} 

  ExcludeRecipients 
(Excludes can be used as 
an alternative name of 
this parameter for this 
setting) 

-Remove  @{ 
ExcludeRecipients = 
"Object3","Object4"} 
   Or 
-Remove  @{ 
Excludes = 
"Object3","Object4"} 

  AdditionalOwners -Remove  @{ 
AdditionalOwners = 
"Owner1","Owner2","O
wner3"} 



Chapter 15 - GroupID Commandlets Parameters 

158 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
Only Set-Dynasty has this 
attribute. 

GroupBy -Remove 
@{Groupby=title} 

      
  AcceptMessagesOnlyFro

m 
(AuthOrig can be used as 
an alternative name of 
this parameter for this 
setting) 

-Remove  @{ 
AcceptMessagesOnlyF
rom = 
"User1","User2","User3
"} 
   Or 
-Remove  @{ 
AuthOrig = 
"User1","User2","User3
"} 

  AcceptMessagesOnlyFro
mGroups 
(DLMemSubmitPerms 
can be used as an 
alternative name of this 
parameter for this 
setting) 

-Remove  @{ 
AcceptMessagesOnlyF
romGroup = 
Group1","Group2","Gro
up3"} 
   Or 
-Remove  @{ 
DLMemSubmitPerms 
= 
"Group1","Group2","Gr
oup3"} 

  RejectMessagesFrom 
(UnauthOrig can be used 
as an alternative name of 
this parameter for this 
setting) 

-Remove  @{ 
RejectMessagesFrom 
= 
"User1","User2","User3
"} 
   Or 
-Remove  @{ 
UnauthOrig = 
"User1","User2","User3
"} 

  RejectMessagesFromGro
up 
(DLMemRejectPerms can 
be used as an alternative 
name of this parameter 
for this setting) 

-Remove  @{ 
RejectMessagesFromG
roup = 
"Group1","Group2","Gr
oup3"} 
   Or 
-Remove  @{ 
DLMemRejectPerms = 



Chapter 15 - GroupID Commandlets Parameters 

159 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
"Group1","Group2","Gr
oup3"} 

  The setting accepts all the identities supported by 
the parameter as the value of objects for each 
parameter. For example, for the SearchContainer 
parameter, the setting can accept the DN and 
GUID of the domains or containers being searched 
for group members. 

Repeat Repeats the trigger. 
RepeatDuration Applicable only when the Repeat parameter is 

applied. It specifies the duration in minutes 
during which the trigger will repeat. 

RepeatInterval Applicable only when the Repeat parameter is 
applied. It specifies the interval in minutes after 
which the trigger will start again. 

Replace  Set-User, Set-Contact, Set-Mailbox 
It will replace the old value of attribute with 
newly specified value. 
Set-Group 
This setting applies to the AdditionalOwners 
parameter and lets you entirely overwrite its 
existing values.  
The syntax in which the value is entered for this 
setting is: 
-Replace @{ AdditionalOwners = 
"Owner4","Owner5"} 
-Replace @{ AcceptMessagesOnlyFrom = 
"User4","User5"} 
-Replace @{ AcceptMessagesOnlyFromGroups = 
"Group4","Group5"} 
-Replace @{ RejectMessagesFrom = 
"User4","User5"} 
-Replace @{ AcceptMessagesOnlyFrom = 
"Group4","Group5"} 
As the value of replacing objects, the setting 
accepts all the identities supported by the 
AdditionalOwners parameter, which is the 
distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of the user, 
contact, or security group.  
Set-SmartGroup, Convert-Group, Set-Dynasty 
This setting applies to the following multi-valued 
parameters and lets you entirely overwrite all of 



Chapter 15 - GroupID Commandlets Parameters 

160 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
their existing values. Parameters and the syntax 
of their values follows: 
Parameter Syntax 

  SearchContainers 
(StartPaths can be used 
as an alternative name of 
this parameter for this 
setting) 

-Replace @{ 
SearchContainers = 
"Container1#1"} 
   Or 
-Replace @{ 
StartPaths = 
"Container1#1"} 
# specifies the search 
scope for each 
container. If scope is 
not given, then 
subtree (2) is used as 
default. 

  IncludeRecipients 
(Includes can be used as 
an alternative name of 
this parameter for this 
setting) 

-Replace @{ 
IncludeRecipients = 
"Object3","Object4"} 
   Or 
-Replace @{ Includes 
= "Object3","Object4"} 

  ExcludeRecipients 
(Excludes can be used as 
an alternative name of 
this parameter for this 
setting) 

-Replace @{ 
ExcludeRecipients = 
"Object5"} 
   Or 
-Replace @{ Excludes 
= "Object5"} 

  AdditionalOwners -Replace @{ 
AdditionalOwners = 
"Owner4","Owner5"} 

Only Set-Dynasty has this 
attribute. 

GroupBy Replace-Remove 
@{Groupby=title} 

   

  
AcceptMessagesOnlyFro
m 
(AuthOrig can be used as 
an alternative name of 
this parameter for this 
setting) 

-Replace @{ 
AcceptMessagesOnlyF
rom = 
"User4","User5""} 
   Or 
-Replace @{ AuthOrig 
= "User4","User5"} 

  AcceptMessagesOnlyFro
mGroups 

-Replace @{ 
AcceptMessagesOnlyF



Chapter 15 - GroupID Commandlets Parameters 

161 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
(DLMemSubmitPerms 
can be used as an 
alternative name of this 
parameter for this 
setting) 

romGroup = 
"Group4","Group5"} 
   Or 
-Replace @{ 
DLMemSubmitPerms 
= "Group4","Group5"} 

  RejectMessagesFrom 
(UnauthOrig can be used 
as an alternative name of 
this parameter for this 
setting) 

-Replace @{ 
RejectMessagesFrom 
= "User4","User5"} 
   Or 
-Replace @{ 
UnauthOrig = 
"User4","User5"} 

  RejectMessagesFromGro
up 
(DLMemRejectPerms can 
be used as an alternative 
name of this parameter 
for this setting) 

-Replace @{ 
RejectMessagesFromG
roup = 
"Group4","Group5"} 
   Or 
-Replace @{ 
DLMemRejectPerms = 
"Group4","Group5"} 

  The setting accepts all of the identities supported 
by the parameter as the value of objects for each 
parameter. For example, for the SearchContainer 
parameter, the setting can accept the DN and 
GUID of the domains or containers being searched 
for group members.  

ReportToManagerEnabled Specify True to send non-delivery reports to the 
group owner or manager. The default value is 
False. 

ReportToOriginatorEnabled Specify True to send non-delivery reports to the 
message originator. The default value is False. 

RestoreReplication It will start the restore replication process.  
RoleCriteriaDN Specify the criteria for a role. The criteria can be a 

group or a container.  
 Group - users that are members of the 

specified group will be assigned this role. 
 Container - users who reside in the specified 

container will be assigned this role. 
RoleCriteriaFilters Specifies the filter criteria for a role. Values to 

this parameter are supplied as a 3-length array.  
 The first index contains the filter name which 

can be one of the 'name' or 'type' 



Chapter 15 - GroupID Commandlets Parameters 

162 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
representing 'client name' and 'client type' 
respectively.  

 The second index contains the operator which 
can be either 'is exactly' or 'is not'.  

 The third index contains the value. It can 
either be the client type or client name, 
depending on the value in the first index.  

Example: @('name', 'is exactly', 'automate 
arslanahmadvm') is a valid filter criteria. However, 
@('client type', 'is not', 'managementshell') is not 
valid because the value at first index is not 
correct. 

RoleCriteriaOperator Specify the operator for criteria filters of a role. 
The operators can be And or Or 

RoleCriteriaScope Specify the scope for a role. This parameter can 
be used in conjunction with RoleCriteriaDN to 
change the role criteria scope from container to 
group and vice-versa. 

RoleDescription Description of an identity store security role. 
RoleDisabled If a new role is created using the Set-

IdentityStore commandlet, the role is created as 
disabled in the identity store. 

RoleName Name of an identity store security role.  
RoleNameToCopy While creating a new role, specify the name of a 

role you want to make a copy of. The new role is 
created using the settings of this role.  

RoleOperation While modifying an identity store settings using 
the Set-IdentityStore commandlet, specify the 
action to perform on an identity store security 
role. Possible actions are: 
 Add 
 Remove 
 Remove all 

RolePermissions While modifying an identity store settings using 
the Set-IdentityStore commandlet, specify the 
permission(s) that are to be granted or denied to 
the security role. 

RolePriority Set a role priority by specifying a value in the 
range of 1-99. Role priority determines which role 
is higher than the other, where 1 indicates the 
highest priority and 99 indicates the lowest 
priority. 



Chapter 15 - GroupID Commandlets Parameters 

163 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
RoleReadonly While modifying an identity store using the Set-

IdentityStore commandlet, specify that the role is 
created as read-only. 

RoleSystemOnly While modifying an identity store using the Set-
IdentityStore commandlet, specify that the role is 
created as system only. 

S  
SamAccountName The logon name for the pre-Windows 2000 

versions of operating systems. The value is 
limited to 24 characters only. 

ScheduleName Name of a schedule job to identify a schedule. 
The schedule job is displayed with this name 
against the Scheduling node on GroupID 
Management Console.  

Script The Smart Script for memberships update. The 
script should be written in Visual Basic .NET in a 
format recognized by Group Script Editor.  
Write the script in a separate file, instead of 
writing the complete script on the shell, and give 
the path of the script file using the ScriptFilePath 
setting.  
Note: If while writing script using this setting, you 
must use a parameter's value that is enclosed in 
double-quotes (""), insert an apostrophe (') before 
every quotation mark. For example, #Region ' 
"Imanami Generated Code' ". 

ScriptFilePath The path to the script file containing Smart Script 
for memberships update. The script should be 
written in Visual Basic .NET (having .vb extension) 
in a format recognized by Group Script Editor. 

SearchContainer The distinguished name (DN) or globally unique 
identifier (GUID) of the domain or one or more 
containers in which to search for users, contact, 
group or dynasty members. 

SearchContainersScopeList This setting works in conjunction with the 
SearchContainer setting and sets the scope for 
the object search. Following are the possible 
values for this parameter: 
 1 (Limits search to the container specified in 

the SearchContainer parameter and ignores 
the sub-containers.)  

 2 (Searches the whole sub-tree, including the 
base container specified in the 



Chapter 15 - GroupID Commandlets Parameters 

164 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
SearchContainer parameter and all its sub-
containers. This is also the default setting for 
this parameter; therefore, if the search scope 
is not explicitly specified, this value is used.) 

Although the values are numerical, you must 
enclose them in double-quotes. For example: "1", 
"2". 

SecurityQuestions Adds a security question in an identity store. 
SecurityToken When you the Get-Token command, you get a 

value against Claims. Provide that value to this 
parameter. 

SecurityType The access level of the group: Private, 
Semi_Private and Public. If this parameter is not 
given, the group is created as Private. 

SendEmail Specify this parameter to send the password 
expiry e-mail notifications. The group must have 
an e-mail address and notifications must be 
configured. 
(Applies to Password Expiry group) 

SendOofMessageToOriginato
rEnabled 

Specify True to enable the group to send Out-of-
Office messages to e-mail senders. The default 
value is False. 

SendToOwners Sends job completion notifications to group 
owners and additional owners as well as to the 
other specified recipients.  

Separator Specifies a character to use in the display name 
and the alias to separate group-by values from 
the each other. 

Server The server name for the following data sources, if 
specified: 
 Microsoft SQL Driver (Name of the Microsoft 

SQL Server that contains the database you 
want to connect to) 

 Oracle (Name of the Oracle server that 
contains the database you want to connect to) 

 Lotus Notes (Name of the Lotus Notes server 
that contains the database you want to 
connect to) 

 Sun ONE iPlanet Driver (DNS name or IP 
address of SunONE server) 

SetNotifications Enables or disables notifications for a scheduled 
job. 



Chapter 15 - GroupID Commandlets Parameters 

165 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
ShouldReturnCollection Specifying this parameter returns a single 

collection of objects containing all groups. 
SimpleDisplayName The printable display name for an object. The 

printable display name is usually the combination 
of the user's first name, middle initial, and last 
name. 

SmartDLNotes The notes entered here are copied to all smart 
groups created using Automate. 

SmartFilter Adds a smart search filter that applies only on 
SmartGroups. The smart search filters are:  
 IsExpired 
 GroupExpiringIn 
 SecurityType 
 ExpirationPolicy. 
(Functional in Get-Group and Get-Smartgroup 
commandlets only) 

SmartGroupType The type of Smart Group that you want the 
commandlet to retrieve. Values of this parameter 
are: 
 SmartGroup 
 SmartDynasty 
Omitting this parameter retrieves both 
SmartGroups and Dynasties. 

SmsGatewayName The name of an SMS gateway. 
SmtpPassword This setting works in conjunction with the 

UseSmtpUserAuthentication, SmtpServer, 
SmtpUserName, SmtpPort and SmtpSSLEnabled 
settings and sets the password of the user 
account to be used for communicating with an 
external SMTP server. 

SmtpPort This setting works in conjunction with the 
SmtpServer setting and sets the port number to 
be used for communicating with an SMTP server. 

SmtpServer The fully qualified name or IP address of an SMTP 
server. GroupID will route messages through this 
server. 

SmtpSSLEnabled This setting works in conjunction with the 
SmtpServer, SmtpUserName, SmtpPassword, and 
SmtpPort settings. Enter True if the external 
SMTP server is SSL-enabled. 

SmtpUserName This setting works in conjunction with the 
UseSmtpUserAuthentication, SmtpServer, 
SmtpPassword and SmtpPort settings and sets the 



Chapter 15 - GroupID Commandlets Parameters 

166 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
e-mail address of the user account to be used for 
communicating with an external SMTP server. 

SQLServer SQL server name on which database of previous 
GroupID version is hosted. 

StartDate Date from which membership will be started or 
revoked or removed. 

SslEnabled Specify that the SMTP server is SSL enabled. 
StartTime Time of the day at which the schedule is 

triggered. 
State The state for a user, contact or mailbox. 
Storage Filters the mailboxes to be returned. If specified, 

only mailboxes on the specified server or mailbox 
store (Exchange 2007-SP3 and 
later/2010/2013/2016) will be returned. Custom 
recipients, public folders and distribution lists are 
not affected by this filter. Typing an asterisk (*) as 
a value of this parameter searches all mailboxes 
on any server. 

StoreDescription Description of an identity store. 
StoreEnabled Enables or disables an identity store. 
Subject The subject of the e-mail notification. 
Sun_Container Specify distinguished name (DN) of a container in 

an external datasource (specifically Sun ONE 
iPlanet datasource) in Query Designer of a smart 
group. 

SupportEmail The e-mail address of the group or contact 
providing support to users of Password Center 
and Self-Service portals. This support e-mail 
address is set by default for all new portals 
created using Password Center and Self-Service. 

SupportURL The default URL of the online help for Self-
Service portals. This URL is set by default for all 
new portals created using Self-Service. 

SWAMobileAttribute The name of the attribute used by Second Way 
Authentication via mobile. 

SWAQuestions The question for security questions based Second 
Way Authentication. The value to this parameter 
is supplied as 2-length arrays. The first index 
contains the question text and the second index 
contains the name of the attribute for that 
question. 



Chapter 15 - GroupID Commandlets Parameters 

167 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
SWAQuestionsOperation The action to perform on the SWAQuestions 

parameter. 
SWAuthenticationFactor Number of authentication types enforced for the 

security role.  
SWEmailAttribute The name of the attribute used by Second Way 

Authentication via email. 
SystemDSN The System Data Source Name (DSN) to use as 

the data source, if the value of the 
DataSourceType parameter is ODBC Data Source. 

T  
TableorView The table or view name if the value of the 

DataSourceType parameter is ODBC Data Source, 
Microsoft SQL Driver or Oracle. 

TargetOperation The actions to perform on targets. Possible values 
are: 
 Add 
 Remove 

Targets Provide the names of groups and containers the 
job will process as per the action provided in the 
TargetOperation parameter.  

TemplateFile The path of the template file that the 
commandlet should use for generating the e-mail 
contents. 

Title Title of a user, contact or mailbox.  
ToEmail Recipient of the email notification.  
TopLevelOnly Sets whether the search should return matches 

only from top-level dynasties or includes sub-
level dynasties in the search as well. The default 
value 0 (zero) returns results from the complete 
hierarchy of dynasties. Specify the value 1 to 
return matches from only top-level dynasties. 

TopManager The distinguished name (DN), globally unique 
identifier (GUID) or samAccountName of the top-
level manager. The commandlet constructs a 
Managerial Dynasty structure by creating a Smart 
Group for all direct reports to the selected top-
level manager and continues down the Dynasty 
structure by creating SmartGroups for all direct 
reports to sublevel managers.  
(Applies to Managerial Dynasty) 



Chapter 15 - GroupID Commandlets Parameters 

168 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
TriggerId Unique identity of a trigger. The ID can be 

retrieved from the Triggers property of Get-
Schedule commandlet. 

TriggerOperation The actions to perform on the provided triggers . 
Possible actions are: 
 Add 
 Remove single by id 
 Remove by type 
 remove all 

TriggerType The trigger type while adding or removing 
triggers to/from a schedule. This parameter is also 
used to select a schedule with a particular trigger 
type. Possible trigger types are: 
 RunOnce 
 RunDaily 
 RunWeekly 
 RunMonthly 
 RunMonthlyDOW 
 OnIdle 
 OnSystemStart 
 OnLogon 

Type New-Group, New-Dynasty, New-SmartGroup, 
New-Dynasty, Convert-Group 
Specifies that the new group or dynasty will be 
used either for mail distribution (a Distribution 
group or dynasty) or for securing public folders or 
other resources (a Security group or Dynasty). 
Set-Group, Set-SmartGroup, Set-Dynasty 
The type of the group to be modified. The 
available types are: Distribution and Security. 
Add-GroupMember 
Perpetual, Temporary Member or Addition 
Pending 
Remove-GroupMember 
Removal Pending, Temporary Removed. If no type 
is given then it will be considered Perpetual 
remove. 

U  
UpdateChildren The default value True forces Automate to update 

the children of a Dynasty when it updates the 
Dynasty itself. Set its value to False to disable this 
feature. 



Chapter 15 - GroupID Commandlets Parameters 

169 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
UpdateMembershipByManag
erEnabled 

A True value enables the group manager to 
update the group membership list. The default 
value is False. 

Username The name of the user that will be used for the 
execution of the commandlet in which it is 
mentioned. This parameter and the Credentials 
parameter cannot be used simultaneously in a 
commandlet. 

UseSmtpUserAuthentication Set its value to True to use SMTP authentication 
for communicating with the SMTP server. The 
default value is False. The authentication details 
are provided by the SmtpUserName, 
SmtpPassword, SmtpPort and SmtpSSLEnabled 
settings. 

UseSmtpUserAuthentication Specify if user authentication of SMTP server is to 
be used. 

V  
ValidationDateRemovalInter
val 

Specify the number of days since the last profile 
validation date. GroupID clears the validation date 
and the policies for new users are applied to this 
user. 

Verb Shows information about commandlets or 
command elements having the specified verb in 
their name. Wildcard search is also supported. 

W  
Weekdays Specify the weekdays for the weekly triggers. 

Possible values are: 
 Sunday 
 Monday 
 Tuesday 
 Wednesday 
 Thursday 
 Friday 
 Saturday 
 AllDays 

WeeksInterval Specify weekly interval in weekly triggers i.e. 
number of weeks after which a scheduled job is 
repeated. 

WhenGroupMembershipThre
sholdReach  

Policy to apply when membership change 
threshold, specified in out-of-bounds 
configurations, is reached. Possible values are: 
 PreventUpdation 



Chapter 15 - GroupID Commandlets Parameters 

170 © 2022 Imanami | Now Part of Netwrix 
 

Parameter Name Description  
 NestIntoChildGroups 

WindowsAuthentication Enables Windows Authentication mode for SQL 
Server. In Windows Authentication mode, 
administrators can enable users to log on to the 
SQL Server using their Windows credentials. 

WindowsLoggingEvent Set events for logging from all GroupID modules 
in a centralized event log named Imanami 
GroupID that can be viewed from the Windows 
Event Viewer. Possible events are: 
 FailureAudit 
 SuccessAudit 
 Info 
 Warn 
 Error 

X  
XDaysBeforeLeaveNotificatio
nMB 

Specify the number of days. The temporary 
additional owner / manager of a group receives a 
notification before the specified number of days 
he or she is removed as additional owner / 
manager. 

XDaysBeforeLeaveNotificatio
nML 

Specify the number of days. The user receives a 
notification before the specified number of days 
he or she is removed from a group membership. 

Y  
YearMonths Specify the months of years for monthly triggers. 

Possible values are: 
 January 
 February 
 March 
 April 
 May 
 June 
 July 
 August 
 September 
 October 
 November 
 December 
 AllMonths 

Z  
Zip The zip code for a user, contact or mailbox. 



Chapter 15 - GroupID Commandlets Parameters 

171 © 2022 Imanami | Now Part of Netwrix 
 

Common Parameters 

GroupID Management Shell does not support Windows Powershell parameter – 
CommonParameter in its commandlets. It refers to the following common 
patameters: 

• Confirm 

• Debug 

• ErrorAction 

• ErrorVariable 

• InformationAction 

• InformationVariable 

• OutBuffer 

• OutVariable 

• PipelineVariable 

• Verbose 

• WarningAction 

• WarningVariable 

• WhatIf 

• Write-Information 

See About Common Parameters for further details. 

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters?view=powershell-6&viewFallbackFrom=powershell-Microsoft.PowerShell.Core


 

172 © 2022 Imanami | Now Part of Netwrix 
 

Appendix A 

Setting the $Credentials environment variable 

By default, the GroupID Management Shell uses the credentials of current user 
logged-on to the identity store for executing commandlets. If you need to use a 
different user account for some commandlets, you must set the $Credentials 
environment variable to the credentials of that user. This user account must also be 
part of the same forest. Once set, the variable can be used as a value for the 
Credential parameter with those commandlets that you want to execute using this 
account. The rest of the commandlets are executed under the credentials of the 
local user.  

Syntax 
$Credentials = new-object 

System.Management.Automation.PsCredential "DomainName\User 

Name",$(convertto-securestring "Password" -asplaintext -

force) 

Example 1 

The following command sets the $Credentials environment variable to the 
credentials of the user, John Smith, which exists on the same domain you are 
logged-on to. 

$Credentials = new-object 

System.Management.Automation.PsCredential 

"JohnSmith",$(convertto-securestring "MyP@ssw0rd" -

asplaintext -force) 

Example 2 

The command below sets the credentials of the user, Brian Regan, which exists on a 
different domain on the same forest. 

$Credentials = new-object 

System.Management.Automation.PsCredential 

"Sales.Imanami.US\BrianRegan",$(convertto-securestring 

"MyP@ssw0rd" -asplaintext -force) 



Appendix A - Setting the $Credentials environment variable 

173 © 2022 Imanami | Now Part of Netwrix 
 

Example 3 

The following command shows how to use the $Credentials environment variable 
with commandlets. 

New-Container -ParentContainer "DC=HR,DC=Imanami,DC=US" -

Name "Recruiting" -Credential $Cred 

 



 

 

 

Imanami | Now part of Netwrix 

6160 Warren Parkway, Suite 100,  
Frisco, TX 75034, 
United States. 
https://www.imanami.com/ 

Support: (925) 371-3000, Opt. 3 
 support@imanami.com 

Sales: (925) 371-3000, Opt. 1 
 sales@imanami.com 

Toll-Free: (800) 684-8515 
Phone:  (925) 371-3000 
Fax:  (925) 371-3001 

https://www.imanami.com/
mailto:support@imanami.com
mailto:sales@imanami.com

